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Abstract

This dissertation consists of two essays about macroeconomic theory of monetary

policy. The first essay derives a general algorithm for finding optimal commitment

policy when the policymaker’s decision stabilizes the economy as well as informing

the private sector about fundamental shocks. The paper describes three equivalent

formulations of the problem facing the policymaker. The last formulation is recursive,

facilitating the finding of the steady state. This paper finds the steady state for a New

Keynesian central bank who has both a transitory and a persistent preference shock.

Under discretion, the private sector’s expected inflation is positive and persistent,

limiting the ability of the central bank to achieve its output target. In contrast,

under commitment, for both persistent and transient shocks, the central bank achieves

negative expected inflation, allowing lower realized inflation and realized output closer

to target.

The second essay introduces a new model for intermediate behavior between dis-

cretion and commitment. Instead of commitment as the ability bind a future self, this

essay reframes it as how much does the current policymaker incorporate the perspec-

tive of its past self. In a monetary New Keynesian context, I define Scaled Commit-

ment, where prior Lagrange multipliers are discounted, nesting both discretion and

commitment. It also allows different degrees of commitment for the always-binding

Phillips curve and occasionally-binding zero lower bound.
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1

Introduction

This dissertation presents two chapters that expand the possible modeling of central

banks, and macroeconomic policymakers in general. The first chapter considers a

central bank in a linear system with quadratic losses, where the central bank has

an informational advantage over the private sector. This means that the central

bank’s choices have a signaling role in addition to the standard stabilization role.

Mertens (2016) has solved a similar models if the central bank is discretionary. This

chapter solves for if the central bank has commitment, which introduces the significant

complication that private-sector updating becomes a control variable.

To solve the model with an informational advantage and commitment, I present

three novel formulations of the problem, and prove their equivalence. The last for-

mulation is recursive and enables the solving for the steady state equilibrium. I solve

repeat the application in Mertens (2016) for commitment instead of discretion and

describe the results.

The second chapter introduces a new model of behavior between discretion and

commitment. In standard models, a policymaker is committed if they can bind their

future self. They are discretionary if they have no control over future actions. Debor-

1



toli and Nunes (2010) introduce a concept where the commitments have a stochastic

chance of being broken, after which the policymaker reoptimizes. This chapter pro-

poses a new framing of commitment, instead of focusing on the ability to bind a

future self, it models acting a committed fashion. In particular, acting in a com-

mitted fashion means doing today what past versions of the policymaker would have

wanted the agent to do. When acting fully committed in this fashion, it is performing

in a timeless manner, a la Woodford (1999). Mathematically, Marcet and Marimon

(2019) introduce Recursive Contracts which solve commitment behavior in a Bellman

setup by making prior Lagrange multipliers a state variable in the problem. I extend

their framework to allow for policymakers that operate in a somewhat committed

fashion, that is they may incorporate prior Lagrange multipliers, but not necessarily

to the extent that a committed agent would.

In Scaled Commitment, the central bank discounts prior Lagrange multipliers by a

scalar factor. This nests discretion and commitment with discount factors of 0 an 1. In

a two-period context, I apply Gul and Pesendorfer (2001) and derive the temptation

function that is consistent with the intermediate behavior. In a recursive context,

I apply Scaled Commitment to the standard New Keynesian model, as well as one

with the occasionally-binding zero lower bound (ZLB) constraint. Two constraints

allow for independent discount factors. I map out the implications for outcomes and

welfare of of the different discount factors with respect to the ZLB. Finally, I show

how Scaled Commitment requires only a minor modification to a standard linear

quadratic regulator solution method.
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2

Optimal LQR Commitment with Signaling

2.1 Introduction

This paper models a fully informed policymaker that can commit to a linear policy,

where he faces a forward-looking constraint based on rational, private-sector expecta-

tions. The additional complication is that the private sector has partial information.

The policymaker’s choices have a signaling role and may inform the private sector.

Therefore, the expectations of the private sector become another control variable for

the policymaker. The structure of the model is that of a linear quadratic regulator

(LQR): transitions and constraints are linear, shocks are Gaussian, and losses are

quadratic. However, the private sector will use Kalman updating for their beliefs,

which depends non-linearly on the policymaker’s choices.

There is empirical evidence suggesting the Federal Reserve has an informational

advantage over the private sector. When the public observes Federal Reserve interest

rate decisions, they update their beliefs about underlying shocks to the economy,

see e.g. Melosi (2016) and Nakamura and Steinsson (2018). In those papers, the

interest rate was set by a Taylor rule which depended on the true shock, and the

3



partially-informed private sector updated based on the observed interest rate.

This paper enables the solving for optimal monetary policy when a central bank

with commitment has an informational advantage. Prior work has presented general

solution methods for when the private sector has the same limited information or is

at an informational advantage over the central bank (Svensson and Woodford (2003,

2004) respectively). When the central bank does not have an informational advantage,

its policy choices do not carry any information. Therefore, in the Svensson and

Woodford papers, a change in policy had linear effects and quadratic losses. They

use the first-order condition to show how the optimal policy depends linearly on the

fundamental state and a co-state of Lagrange multipliers from the constraints.

When an informational advantage for the central bank is present, Mertens (2016)

shows how to solve for optimal policy if the central bank is discretionary. The dis-

cretionary central bank is aware that the private sector will use a Kalman gain based

on its policy to update their beliefs about the state of the economy. However, the

Kalman gain is linear like the rest of the model. When finding optimal discretionary

policy, the central bank takes the private-sector updating as given. So like the Svens-

son and Woodford papers, for the purposes of optimization, a change in policy has

linear effects and quadratic losses. Therefore, the first-order condition gives the cen-

tral bank’s best response to any specific private-sector Kalman gain. Mertens presents

an algorithm to find a Kalman gain that is consistent with the central bank’s best

response and rational, forward-looking expectations. Crucially though, the central

bank takes the Kalman gain as given and does not alter its policy in order to shape

this period’s private-sector updating.

Because this paper’s model has both commitment and an informational advantage

for the central bank, it has a complication not present in the work cited above. In

the works above, the central bank does not try to change the private-sector updating

process with its policies. When it does not have an informational advantage, its

4



choices do not affect private-sector updating. And under discretion, its choices are

a best response to private-sector updating, which it takes as given. Only under

commitment with an informational advantage does the private-sector updating itself

become a control variable.

In order to optimally shape the private-sector updating, the policymaker must

commit to a policy before any shocks are realized. The distribution of initial shocks

and the committed policies will be common knowledge. The private sector will use

that common knowledge to update their beliefs based the signals they observe. Once

some shocks are realized, the central bank will have a different preference ranking for

potential policies. For a bank with commitment, the optimal policies are those that

minimize unconditional expected losses, before any shocks are realized. Because they

minimize unconditional expected losses, they are chosen based on the distribution of

shocks and model parameters.

So that the private sector uses a Kalman filter, as in Mertens (2016), I limit the

policymaker to using linear policies. This is equivalent to choosing matrices for the

weightings on different inputs into the policy before any shocks are realized.1 There

is not a simple first order condition for the matrices, because their weights have non-

linear effects on the model, as the mapping from policy to Kalman filter is non-linear.

I describe three novel formulations of the problem, and prove their equivalence.

The first formulation is the Full History Sequence Problem (FHSP), in which the

policymaker chooses a sequence of matrices that include linear weights on the full

history of shocks. This is equivalent to a fully state-contingent linear policy. As a

consequence, the number of weights for period t is proportional to t. The second

formulation is the Commitment-Error Sequence Problem (CESP). In it, the policy-

maker chooses a sequence of matrices of fixed size, basing the policy each period on

1 If the weights are chosen after any shocks are known, they could vary based on those shocks,
which would mean the final policy is not linear in the inputs.
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a commitment of predictable policy from past period, and a linear weighting on the

private sector’s prediction errors. The bulk of the proof is the equivalence between

the FHSP and the CESP. It is challenging because of the dimension reduction. In the

FHSP, the policymaker chooses a growing number of parameters each period, and in

the CESP, the policymaker chooses a fixed number of parameters each period.

Both the FHSP and CESP choose an infinite sequence of matrices based on model

parameters and the distribution of the initial shock. I call this perspective the un-

conditional perspective. Once the policymaker knows any single realized shock, it is

likely that they would choose different matrices as inputs into the policy, which break

the linearity of the final policy. Therefore, in all formulations the policymaker must

choose the matrices before any shocks are realized. This informational posture is dif-

ferent than other commitment models, where the policymaker can base their policy

on at least some realized shocks.2

The Variance Bellman Problem (VBP) is the third formulation and most tractable

computationally. In it, each period there will be an augmented state composed of

three parts: this period’s fundamental state, the previous period’s private-sector pre-

diction of this period’s fundamental state, and the previous period’s private-sector

prediction of this period’s policy choice. When the policy is implemented, the final

part will constitute the policymaker’s commitment from the previous period. Like

the sequence formulations, the VBP chooses matrices from the unconditional per-

spective. Therefore, the VBP recursive value function has a different meaning than

normal Bellman or Recursive Contract value functions. In those problems, the value

function represents total discounted utility from the perspective of an agent at a

particular period t. In the VBP, the value function represents the expected losses

2 See e.g. Marcet and Marimon (2019, p. 3 (1591)) where state-contingent problems are based
on initial state x0 and initial shock s0; Svensson and Woodford (2004, p. 14 (674)) where the
instrument it is a function of the policymaker’s estimate of the underlying state Xt|t and the prior
Lagrange multiplier Ξt−1|t. Those models could be solved based on the unconditional perspective,
but it is easier to solve them based on the information available.
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starting at a period t from the unconditional perspective.

The value function equals unconditional expected losses starting from a certain

period. Its argument is the period’s augmented state covariance matrix, i.e. the

unconditional distribution of the augmented state for a specific period. From that

information the policymaker chooses one period of the CESP matrices. The covari-

ance matrix and the matrices are sufficient to calculate expected losses and the next

period’s augmented state covariance matrix.

The novelty of this approach is that the recursion is from the unconditional per-

spective, i.e. is always about unconditional expected losses and distributions. It takes

place before any realizations. It is a recursive formulation for the policymaker in the

same position as the CESP, committing to an infinite sequence of matrices from an

unconditional perspective. It is not equivalent to a sequence of policymakers through

time. Once the VBP is solved, its policy functions represent a sequence of matrices

that can be combined with shocks and augmented states to determine the realized

policies through time. With the VBP it is possible to find the steady state of the

system, in which the augmented state has the same distribution across periods. In

this paper, I do so for the commitment version of the application in Mertens (2016).

There are some similarities between this paper and Marcet and Marimon (2019),

in which they prove an equivalence between state-contingent commitment policies and

their Recursive Contracts formulation. In their recursive formulation, the utility func-

tion of the policymaker next period is updated to incorporate how the policies next

period affect prior constraints. The optimal choice of the modified utility function is

the one that past policymakers would have committed themselves to. My solution

differs in that I solve for policies every period based on distributions of states, not

realized values. This comes from the different informational structure of my problem.

By limiting myself to one-period forward constraints and linear Gaussian systems,

I can embed the commitment directly into the augmented state, and therefore its

7



distribution. But broadly, there is the similarity of drawing an equivalence between

a state-contingent formulation and a recursive formulation.

The VBP is best thought of as alternative path to calculating CESP losses and

determining optimal matrices. Instead of choosing all the matrices simultaneously

to minimize the expectation of the entire sum of losses, the value function is used

to encapsulate expected losses after this period. Then, inside the value function the

minimization chooses a specific period’s matrices given its augmented state distribu-

tion. This period’s augmented state distribution can be combined with the matrix

choices to calculate expected losses this period and the next period’s augmented state

distribution. The optimal choices balance effects on the expected losses this period

future expected losses via the value function called with the next period’s augmented

state distribution. Like the CESP but unlike value functions in other models, its

evaluation is entirely about expected losses and from the unconditional perspective.

This paper proceeds as follows, Section 2.2 presents a two-period version of the

New Keynesian central bank model. It demonstrates the differences between the

three formulations described above. Section 2.3 describes the infinite horizon model

and defines formally the three formulations. Section 2.4 proves their equivalence.

Section 2.5 repeats the New Keynesian model from Mertens (2016), but solving for

commitment instead of discretion. Finally, Section 2.6 concludes.

2.2 Two-Period Model

This section uses the three formulations of the problem to solve a two-period New

Keynesian monetary policy model. In each period, the central bank’s output target

is composed of two shocks, a permanent one that affects both periods, and a transi-

tory one that affects only one period. I solve the model under both Full Information

and Partial Information, to compare how the partial information changes the opti-

mal policy of the central bank. The full information version could be solved with
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more traditional methods, but it is also possible to solve them based on the novel

formulations of this paper.

The policymaker has a time varying target for the output gap gt
3

g1 = v + ε1

g2 = v + ε2 v
ε1
ε2

 ∼ N

0,

σ2
v 0 0
0 σ2

ε 0
0 0 σ2

ε


where v is the preference shock that persists across the two periods, and εt is the

transitory shock. The losses take the form

Lt = E
{
π2
t + (gt − gt)

2}
L = L1 + L2

where πt is inflation. With two periods, I remove discounting.

The standard New-Keynesian Phillips Curve is πt = κgt + βE {πt+1}. For sim-

plicity, I use κ = β = 1 and π3 = 0. There are two constraints,

π1 = g1 + π2|1 (2.1)

π2 = g2 (2.2)

Forward-looking expectations are taken based on the private sector’s information

set, π2|1 = E {π2|Ips1 }. Under Full Information, Ips1 = {v, ε1}, and under Partial

Information, Ips1 = {π1}. For all problem formulations, the private sector will use a

Kalman update to estimate v and ε1 based on either (v, ε1) or π1

E

{[
v
ε1

]
|Ips1
}

=

[
v|1
ε1|1

]
= K{FI,PI}

 v
ε1
π1


3 I use unconventional variable g for the output gap, because x and y are used in the proof.
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with K · maps (v, ε1, π) to private sector beliefs about the shocks. Under Full Informa-

tion, the private sector directly observes the shocks, and under Partial Information,

there will linear weights based on π1

KFI =

[
1 0 0
0 1 0

]
(2.3)

[
v|1
ε1|1

]
= KPI,ππ1

KPI =
[
0 0 KPI,π

]
(2.4)

In all three formulations, π1 will depend linearly on v and ε1. Let row vector G1

hold those linear weights

π1 = G1

[
v
ε1

]
and let the shocks have distribution Σvε[

v
ε1

]
∼ N (0,Σvε)

Σvε =

[
σ2
v 0
0 σ2

ε

]

The Kalman update for Partial Information is given by

KPI,π = ΣvεGT
1

(
G1Σ

vεGT
1

)−1

Controlling KPI,π is the reason that the central bank commits to G1 before any shocks

realize.

A key to my approach is that for commitment, the optimal linear policy can be

chosen before the first shock realizes, based on covariances and minimizing uncondi-

tional losses. In my proof, I prove the equivalence of the three problem formulations,

which I will apply here. The policymaker is a Ramsey planner and chooses all instru-

ments and forward-looking outcomes subject to the Forward-Looking Constraint. In

10



this problem that would mean choosing both πt and gt such that (2.1) and (2.2) are

met. However, we can simplify the problem by letting the policymaker optimize the

choice of πt, and then get the implied gt: g1 = π1 − π2|1 and g2 = π2.

2.2.1 Summary of Problem Formulations

Here is the central bank’s problem as a Full History Sequence Problem (FHSP)

V (Σvε) = min
G1,G2

E {L1 + L2}

s.t.
[
v
ε1

]
∼ N (0,Σvε)

w2 ∼ N (0, 1)[
v
ε2

]
=

[
1 0
0 0

] [
v
ε1

]
+

[
0
σε

]
w2

π1 = G1

[
v
ε1

]

π2 = G2

 v
ε1
ε2


g1 = π1 − π2|1

g2 = π2

where unconditional expected losses will depend on the distribution of shocks, Σvε,

the variance of ε2 is controlled by the σε multiplied by unit variance w2, G1 is a row

vector of length 2, G2 is a row vector of length 3, and π2|1 = E {π2|Ips1 } which can vary

across informational setups. In particular, under both Full and Partial information,

π2|1 will depend on G2. Under Partial Information, it also depends on the information

11



in π1, [
v|1
ε1|1

]
= K{FI,PI}

 v
ε1
π1

 = K{FI,PI}
[
I
G1

] [
v
ε1

]

π2|1 = G2

 v|1
ε1|1
0

 = G2

1 0
0 1
0 0

K{FI,PI}
[
I
G1

] [
v
ε1

]

where KFI and KPI are defined in (2.3) and (2.4). Using the matrices to choose

πt, and then calculating the consistent gt means that all possible G1, G2 meet the

Forward-Looking Constraint.

In the FHSP, the policymaker is minimizing the total sum of losses. The choice

variables are two row vectors that determine how the policies depend on the full

history up to that period.

Here is the central bank’s problem as a Commitment Error Sequence Problem

12



(CESP)

W (Σvε) = min
Ge

1,G
c
1,G

e
2

E {L1 + L2}

s.t.
[
v
ε1

]
∼ N (0,Σvε)

w2 ∼ N (0, 1)[
v
ε2

]
=

[
1 0
0 0

] [
v
ε1

]
+

[
0
σε

]
w2

π1 = Ge
1

[
v
ε1

]
[
v|1
ε1|1

]
= K{FH,PI}

 v
ε1
π1


π2|1 = Gc

1

[
v|1
ε1|1

]

π2 = π2|1 +Ge
2

([
v
ε2

]
−
[
v|1
0

])
g1 = π1 − π2|1

g2 = π2

where again unconditional losses depend on the distribution of shocks Σvε; row vectors

Ge
1, Gc

1, and Ge
2 are all of length 2.4 The superscript e signifies error for the private

sector’s prediction error. The superscript c in Gc
1 stands for the commitment the

policymaker makes regarding π2|1. Finally, by using the matrices to determine πt,

and then getting the implied gt, all possible {Ge
1, G

c
1, G

e
2} meet the Forward-Looking

Constraint.

The CESP structures the problem differently than the FHSP. In the FHSP, the

4 In the full proof, I would allow Gc
2 to be multiplied by

 v|1
ε1|1
π1|1

, but in this problem π1|1 ∈

span
([

v|1
ε1|1

])
, so I simplified.
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expected behavior of π2|1 was determined by the information the private sector had,

Ips1 , and the policy G2. Here π2 is decomposed into the private-sector predictable part,

which is controlled by Gc
1, and the part that depends on private-sector prediction

error, Ge
2. Note that by construction, whatever the choice of Ge

2,

E

{
Gc

1

[
v|1
ε1|1

]
|Ips1
}

= Gc
1

[
v|1
ε1|1

]

E

{[
v
ε2

]
−
[
v|1
0

]
|Ips1
}

= 0

and therefore, E {π2|Ips1 } = Gc
1

[
v|1
ε1|1

]

In other words, π2 is chosen in such a way as it is guaranteed to be consistent with

the rational expectation which was set by K{FI,PI} and Gc
1.

Now we will consider the Variance Bellman Problem (VBP), which differs from

traditional Bellman problems. The normal pattern for a Bellman function is that

the recursive call captures the discounted losses of the agent in the next period. For

example, if we were considering a consumption decision based on a wealth state,

V (w) = max
c

u (c) + βE {V (w′)}

V (w′) would represent the discounted utility of the consumer in the next period. It’s

possible to use V (w0) above to calculate a state contingent sequence {ct}∞t=0, but it

is equally valid to think about each ct being decisions made at different times.

In contrast, the recursive function in a VBP does not accept as argument a state

variable, but rather a covariance representing an augmented-state distribution. In
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the first period, the augmented state will be

y1 =


v
ε1
v|0
ε1|0
π1|0

 =


v
ε1
0
0
0

 ∼ N (0,Σy
1)

[
v
ε1

]
= evεy1

evε =

[
1 0 0 0 0
0 1 0 0 0

]

The (mean-zero) augmented state y1 has five elements, but in the first period the

private sector has no information or expectation coming into the period, so the bottom

three elements of y1 will be uniformly 0, as will their covariances,

Σy
1 =


Σvε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Both Marcet and Marimon (2019) and Mertens (2016) have recursive value func-

tions with augmented state arguments. In the former, the state is augmented with

Lagrange multipliers representing prior commitments, and in the latter, the state is

augmented with the private sector’s estimate of the state coming into the period. For

this problem the Mertens (2016) state would be
[
v ε1 v|0 ε1|0

]′. In the VBP, the

argument is Σy
1 instead of y1. The central bank will commit to policies for period 1

based on the distribution Σy
1, instead of choosing policies after observing any part of

y1. (Note that because of the finite horizon, the value function and choices will be dif-

ferent for the first period and second period. Both, however will accept unconditional

distributions as arguments: Σy
1 and Σy

2.)

For the two-period model the FHSP and CESP are tractable. The key feature of

the VBP is that the value function for the second period, U2 (Σ
y
2), can be calculated
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without reference to prior policies beyond the covariance matrix Σy
2. This demon-

strates how the VBP is capable of transforming the infinite problem into a recursive

one, and that Σy is a sufficient statistic for calculating optimal Ge and Gc choices.

Given the distribution of the y1 for period 1, the policymaker can minimize his

choice of Ge
1 and Gc

1, taking into account the fact that they will affect expected utility

for later periods, based on changing the next period’s distribution Σy
2. The definition

of U1 is given by

U1 (Σ
y
1) = min

Ge
1,G

c
1

E {L1}+ U2 (Σ
y
2)

s.t. y1 ∼ N (0,Σy
1)

π1 = Ge
1

[
v
ε1

]
= Ge

1e
vεy1

π2|1 = Gc
1

[
v|1
ε1|1

]
g1 = π1 − π2|1

where Ge
1 and Gc

2 are row vectors of length 2, and Σy
2 is calculated below.

Beliefs updates use K{FI,PI} is given by (2.3) or (2.4), depending on which infor-

mational structure we are modeling.

[
v|1
ε1|1

]
= K{FI,PI}

 v
ε1
π1

 = K{FI,PI}
[
I
Ge

1

]
evεy1

The system evolves according to

w2 ∼ N (0, 1)[
v
ε2

]
=

[
1 0
0 0

] [
v
ε1

]
+

[
0
σε

]
w2

Now I show how Σy
2 is calculated from Σy

1, Ge
1, and Gc

1. Note first that[
v|1
ε2|1

]
=

[
1 0
0 0

] [
v|1
ε1|1

]
16



so together  v|1
ε2|1
π2|1

 =

[1 0
0 0

]
Gc

1

[ v|1
ε1|1

]

Therefore we can calculate the entire transition matrices Ay
1 and By,

y2 =


v
ε2
v|1
ε2|1
π2|1

 ∼ N (0,Σy
2)

= Ay
1y1 +Byw2

w2 ∼ N (0, 1)

Ay
1 =


[
1 0
0 0

]
evε[1 0

0 0

]
Gc

1

K{FI,PI}
[
I
Ge

1

]
evε



By =


0
σε

0
0
0


and from these combined we can calculate the distribution of y2

Σy
2 = Ay

1Σ
y
1 (A

y
1)

T +By (By)T

As a reminder, U1 and U2 take as arguments the covariance matrices of augmented

states y1 and y2. Note especially that part of y2 is π2|1, which is a choice variable

of period 1 optimization. π2 (y2,Σ
y
2) will be linear in y2 for all Σy

2 , and it will be

constructed in such a way to ensure that prior period’s private-sector expectation is

followed through upon, E {π2 (y2) |Ips1 } = π2|1. U2 includes the optimization of period

2 policies, but those policies always ensure that

π2|1 =
[
0 0 0 0 1

]
y2
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is a rational expectation. The choices that remain for the optimization of period 2

policies are only things that do not change π2|1.

The second period covariance has the form

y2 =


v
ε2
v|1
ε2|1
π2|1

 =


v
ε2
v|1
0

π2|1

 ∼ N (0,Σy
1)

evε ≡
[
1 0 0 0 0
0 1 0 0 0

]
[
v
ε2

]
= evεy2

evε2|1 ≡
[
0 0 1 0 0
0 0 0 1 0

]
[
v|1
ε2|1

]
=

[
v|1
0

]
= evε2|1y2

eπ2|1 ≡
[
0 0 0 0 1

]
π2|1 = eπ2|1y2

Here is the period 2 value function

U2 (Σ
y
2) = min

Ge
2

E {L2}

s.t. y2 ∼ N (0,Σy
2)

π2 = π2|1 +Ge
2

([
v
ε2

]
−
[
v|1
ε2|1

])
=
(
eπ2|1 +Ge

2

(
evε − evε2|1

))
y2

g2 = π2

so the optimization of period 2 policies amounts to choosing Ge
2 that minimizes losses,

given the distribution of y2.5

5 In this particular case no matter Σy
2 and informational setup, the optimal Ge

2 =
[
0.5 0.5

]
.
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The usual Bellman equation describes the problem that a policymaker will face for

some period, and how they will choose the optimal policy when that period arrives.

It is from the perspective of that period. Recursive Contracts can be thought of as

solving the problem from the original perspective, after x0 realizes. Alternatively it

can be thought of as if the policymaker’s utility function is modified in the specified

manner, then when period t arrives, he will choose to act in the way that he would

have committed himself to act in that period.

The VBR formulation is different than both of these. Optimal commitment with

signaling must be determined before any shocks are realized, from the unconditional

perspective. The VBR and its equivalence shows that optimal policy for period t can

be calculated based only on the covariance the augmented state for period t, which has

a fixed dimension of (2Nx +Na)× (2Nx +Na). The optimal policy are some matrices

that will be combined with the augmented state in order to form the period t policy.

But these matrices must be chosen from the unconditional perspective. Unlike the

Bellman equation, and unlike the second interpretation for Recursive Contracts, we

cannot think of what a policymaker will choose to do once t arrives. As soon as any

shocks have been realized, the weights the policymaker would choose are changed.

Summarizing the three approaches. The FHSP chooses row vectors, G1 and G2

size 2 and 3 respectively, which are the weights for the state-contingent policy of

the full history. This is equivalent to choosing the linear functions π1 (v, ε1) and

π2 (v, ε1, ε2).

π1 = G1

[
v
ε1

]

π2 = G2

 v
ε1
ε2


Under Full Information, these weights could be chosen after v and ε1 are realized,

however under Partial Information, they must be committed to in advance as they
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affect the information updating done by the private sector in the first period.

The CESP chooses three row vectors: Ge
1, Gc

1, and Ge
2 all of length 2, where

π1 = Ge
1

[
v
ε1

]

π2|1 = Gc
1

[
v|1
ε1|1

]

= Gc
1K

{FH,PI}
[
I
Ge

1

] [
v
ε1

]

π2 = π2|1 +Ge
2

([
v
ε2

]
−
[
v|1
0

])

where KPI is a function of Σvε and the weights in Ge
1. Again, under Full Information,

these three row vectors could be chosen after realization of v and ε1, but for Partial

Information, they must be committed to in advance.

Finally, the VBP is choosing vector functions, Ge
1 (Σ

y
1), Gc

1 (Σ
y
1), and Ge

2 (Σ
y
2) with

a crucial difference in how π2 is calculated.

y1 ∼ N (0,Σy
1)

π1 = Ge
1 (Σ

y
1) e

vεy1

π2|1 = Gc
1 (Σ

y
1)

[
v|1
ε1|1

]

= Gc
1 (Σ

y
1)K

{FH,PI}
[
I
Ge

1

]
evεy1

∈ y2

The distribution of y2 is the argument to U2, and its components are

y2 =


v
ε2
v|1
ε2|1
π2|1

 ∼ N (0,Σy
2)
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In the VBP, the optimization of period 2 policies chooses them as

π2 =
(
eπc|p +Ge

2 (Σ
y
2)
(
evε − evεc|p

))
y2

= π2|1 +Ge
2 (Σ

y
2)

([
v
ε2

]
−
[
v|1
0

])

The three formulations have different approaches to the problem, however they

yield the same optimal policies.

2.2.2 Results

For all the formulations, the policies under Full Information do not depend on the

variances of the shocks. All three policies also choose a 2-element row vector for

weights determining π1

GFI
1 =

[
0.6 0.4

]
For the second period policy, the FHSP formulation central bank chooses

GFI
2 =

[
0.2 −0.2 0.5

]
Under CESP, the policymaker chooses

Gc,F I
1 =

[
0.2 −0.2

]
Ge,FI

2 =
[
0.5 0.5

]
although the first term in Ge,FI

2 has no effect, because v = v|1.

To explore the value functions in the VBP precisely, I will show below how losses

would be calculated for any Ge
1, Gc

1. Label the elements as

Ge,FI
1 =

[
ev ec

]
Gc,F I

1 =
[
cv cε

]
and let the variances be unit,  v

ε1
ε2

 ∼ N (0, I)
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The VBP optimization will make the same choices as the CESP, however we can

calculate U1 and U2 explicitly. Σy
2 will have the form

Σy
2 =


1 0 1 0 cv
0 1 0 0 0
1 0 1 0 cv
0 0 0 0 0
cv 0 cv 0 c2v + c2ε


Whatever the informational structure, an optimal choice is Ge

2 =
[
0.5 0.5

]
. So

solving for UFI
2 (Σy

2)

π2|1 = cvv + cεε1

π2 = π2|1 +
1

2
ε2

E
{
π2
2

}
= c2v + c2ε +

1

4

g1 − g1 = π2 − v − ε2

E
{
(π2 − v − ε2)

2} = (1− cv)
2 + c2ε +

1

4

UFI
2 (Σy

2) = E {L2} = 2c2ε + c2v + (1− cv)
2 +

1

2

From only the variables in Σy
2, we can give the precise formula for UFI

2 . This means

that we can also do the same for U1 depending only on

π1 = evv + eεε1

π2|1 = cvv + cεε1

g1 = π1 − π2|1

= (ev − cv) v + (eε − cε) ε1

g1 − g1 = (ev − cv − 1) v + (eε − cε − 1) ε1
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which lets us precisely define UFI
1 ,

UFI
1 (Σy

1) = E {L1}+ UFI
2 (Σy

2)

= e2v + e2ε + (ev − cv − 1)2 + (eε − cε − 1)2 + UFI
2 (Σy

2)

The first order conditions give the same choices as the CESP

Ge,FI
1 =

[
0.6 0.4

]
Gc,F I

1 =
[
0.2 −0.2

]
The forward-looking expectations increase losses for v and decrease them for ε1.

This is because v increases both g1 and g2, while ε1 only affects g1. From the per-

spective of period 1, the policymaker prefers that E
{
π2|1|v

}
/v and E

{
π2|1|ε1

}
/ε1

to be as close to −1 as possible. But purely from the perspective of period 2, the

policymaker would prefer E
{
y2|1 = π2|1|v

}
= 1

2
v. Balancing these two costs, the

policymaker chooses E
{
π2|1|v

}
= 1

5
v. In response to ε1, the ideal reaction from

the perspective of period 2 is to ignore it, so the balance between periods produces

E {π2|ε1} = −1
5
ε1. This balances extra variance in π2 and y2 against the benefit of

the expectation to period 1 losses.

Under full information, the only surprise in period 2 is ε2, and it is independent

of period 1 policies. The response to ε2 is fully optimized so E {π2|ε2} = 1
2
ε2, but the

response to v and ε1 are chosen to balance costs and benefits across periods.

Partial Information

Because the private sector is doing signal extraction, the numerical values will depend

on the variance of the first period shocks. For the numerical results below, I give them

both unit variance. [
v
ε1

]
∼ N

(
0,

[
1 0
0 1

])
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In the Full History formulation, the solution is

GPI
1 =

[
0.311 0.56

]
π1 = GPI

1

[
v
ε1

]
GPI

2 =
[
0.344 −0.28 0.5

]
π2 = GPI

2

 v
ε1
ε2


The private sector updates their beliefs according to

KPI,π = GT
1

(
G1G

T
1

)−1
=

[
0.76
1.37

]
[
v|1
ε1|1

]
= KPI,ππ1

The central banker chooses to put less weight on v than ε1, because it causes

private sector ascribe more of the observed π1 to the temporary shock, than the

persistent shock. The net result is[
v|1
ε1|1

]
= KPI,πG1

[
v
ε1

]

=

[
0.24 0.42
0.42 0.76

] [
v
ε1

]
After we calculate the private-sector beliefs, we can determine the implied π2|1,

π2|1 =
[
0.344 −0.28

] [0.24 0.42
0.42 0.76

] [
v
ε1

]

=
[
−0.038 −0.068

] [ v
ε1

]
We see that for both shocks, the private sector response of π2|1 is negative. This is

beneficial for first period losses because recall g1 = π1 − π2|1, and the central bank

wants higher g1 and lower π1 responses to the shocks.

24



Ignoring effects on first period expectations, the central bank would like G2 =[
0.5 0 0.5

]
. Under Full Information it chooses, GFI

2 =
[
0.2 −0.2 0.5

]
. The rea-

son the first element drops to 0.2 is because of its deleterious effect on π2|1 and

first period losses. Under Partial Information, the central bank chooses GPI
2 =[

0.344 −0.28 0.5
]
, with higher first element, and yet π2|1 still negatively responds

to v shocks. This is precisely because of the information shaping in the choice of GPI
1 .

For a shock (v = 1, ε1 = 0), [
v|1
ε1|1

]
=

[
0.24
0.42

]
so the negative weight on ε1 in G2 causes the π2|1 = −0.038, reducing losses in period

1.

I numerically solve the problem using all three formulations, and they yield the

same net policies, but the policymaker constructs π2 differently. The first matrix is

the same as the FHSP, Ge,PI
1 = GPI

1 . And Ge
2 is pinned down as well. However, there

is more than one optimal Gc
1, because

[
v|1 ε1|1

]′ is collinear as it is a vector multiplied

by π1, the private sector’s only information. I present below the representation value

that only puts weight on v|1. In the CESP, the central banker is choosing all the

matrices simultaneously.

Ge,PI
1 =

[
0.311 0.56

]
π1 = Ge,PI

1

[
v
ε1

]
Gc,P I

1 =
[
−0.16 0

]
π2|1 = Gc,P I

1

[
v|1
ε1|1

]
Ge,PI

2 =
[
0.5 0.5

]
π2 = π2|1 +Ge,PI

2

([
v
ε2

]
−
[
v|1
0

])
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Again to demonstrate how the VBP works, we will calculate its losses for any

choices of Ge
1, and Gc

1,

Ge,PI
1 =

[
ev eε

]
Gc,P I

1 =
[
cv 0

]
The final quantity we will define now, and then calculate later is, σ2

v|1 = Var
(
v|1
)
. Σy

2

will have the form

Σy
2 =


1 0 σ2

v|1 0 cvσ
2
v|1

0 1 0 0 0
σ2
v|1 0 σ2

v|1 0 cvσ
2
v|1

0 0 0 0 0
cvσ

2
v|1 0 cvσ

2
v|1 0 c2vσ

2
v|1


Again the optimal second period choice is always Ge

2 =
[
0.5 0.5

]
,

π2|1 = cvv|1

π2 = π2|1 +
1

2

(
v − v|1

)
+

1

2
ε2

g2 − g2 = (cv − 1) v|1 −
1

2

(
v − v|1

)
− 1

2
ε2

because v|1 is orthogonal to
(
v − v|1

)
, the unconditional losses are,

UPI
2 (Σy

2) =
(
c2v + (cv − 1)2

)
σ2
v|1 +

1

2

(
1− σ2

v|1
)
+

1

2

Note that because σ2
v|1 < 1, and cv < 0.5, these losses are increasing in σ2

v|1. The

better the private sector’s estimate, the worse losses are in the second period. This

is because the central bank must follow through on the commitment π2|1 with regard

to the private sector’s estimate of v|1, but can freely optimize the prediction error,

v− v|1. While cv < 0.5, which will always be the case for optimal choices, the second

period losses are decreasing in cv.

Now moving back to UPI
1 (Σy

1), again naming variables for the choices

Ge,PI
1 =

[
ev eε

]
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The optimal estimate for v is v|1 = Kv,PI
π π1 with

Kv,PI
π =

ev
e2v + e2ε

σ2
v|1 =

e2v
e2v + e2ε

π2|1 = cvK
v,PI
π π1

g1 =
(
1− cvK

v,PI
π

)
π1

=
(
1− cvK

v,PI
π

)
(evv + eεε1)

Let rg = 1− cvK
v,PI
π . Therefore,

E {L1} = e2v + (1− rgev)
2 + e2ε + (1− rgeε)

2

UPI
1 (Σy

1) = E {L1}+ UPI
2 (Σy

2)

Because Kv,PI
π has ev and eε in the denominator, the first order condition for them

gives a cubic equation, and I solve them numerically.

This section’s two period exercise demonstrated two things. First it showed con-

cretely how the three formulations address the problem. Second, in terms of outcomes,

it showed how under Partial Information, the central bank has an incentive to place

more relative weight on the temporary shock, in order to worsen the private sector’s

information. Lower quality private-sector information gives the central bank more

opportunity to reoptimize in the second period.
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2.3 General Model

In this section, I present the general recursive model, and the three formulation def-

initions. There are Nx backward-looking state variables in vector xt, and Na action

variables available to the policymaker in vector at. Some macroeconomic frameworks

separate the policymaker’s instruments, e.g. interest rate, from forward-looking out-

comes, e.g. inflation and output. I follow Marcet and Marimon (2019) in treating the

policymaker as a Ramsey planner, who chooses both instruments and forward-looking

outcomes subject to the constraints.

Let Nxa ≡ Nx + Na. Each period the policymaker faces a quadratic loss in the

form a positive, semi-definite matrix L of size Nxa ×Nxa,

Lt =

[
xt

at

]T
L

[
xt

at

]
(2.5)

In the very first period, x0 ∼ N (0,Σx
0). The backward-looking state evolves

according to

xt+1 = A

[
xt

at

]
+Bwt+1 (2.6)

wt+1 ∼ N (0, INw) (2.7)

for shocks wt+1, and A has size Nx ×Nxa and B has size Nx ×Nw.

The private sector has limited information, each period observing Nz signals,

collected in zt,

zt = C

[
xt

at

]
(2.8)

Ipst = zt = {zτ |τ ≤ t} (2.9)

where C has size Nz ×Nxa.

The policymaker faces a constraint that is, in part, forward looking based on the

private sector’s information set. At every period t, there are Nµ linear constraints
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which must hold for every possible realization of shocks,

0 = D

[
xt

at

]
+ E

{
J

[
xt+1

at+1

]
|Ipst
}

where D and J have size Nµ × Nxa. In this paper, I use subscript |t notation to

represent based on Ipst , xt+1|t = E {xt+1|Ipst }.

Definition 1. The Forward-Looking Constraint for period t is,

0 = D

[
xt

at

]
+ J

[
xt+1|t
at+1|t

]
(2.10)

This type of constraint is common in the linearization of equilibrium conditions

that determine private sector choices. For instance, in a rational expectations mon-

etary model, the private sector sets prices in the current period based in part about

their expectations for prices for the next period.

So that the private sector will use the Kalman update, I require that at be mean-

zero and jointly normal with the other random variables in the model.6 This requires

that, for a0, there exists an Na ×Nx matrix G0 such that

E {a0|x0} = G0x0

Var (E {a0|x0}) = G0Σ
x
0G

T
0

However, it’s possible that a0 has additional variance beyond the shock-based

covariance, i.e. Σa
0 − G0Σ

x
0G

T
0 ̸= 0. To model extra variance, I introduce a random

variable η0, whose distribution the policymaker chooses. Let Ση
0 of size Na × Na be

defined as

Ση
0 ≡ Var (a0)− Var (E {a0|x0}) = Var (a0)−G0Σ

x
0G

T
0

6 Note that h0 = x0.
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Any a0 that is jointly normal with x0 can be expressed as

a0 = G0x0 + η0 (2.11)

η0 ∼ N (0,Ση
0)

with G0 and Ση
0 defined as above. The fact that that their could be an ηt shock to at

means that the full history of shocks is defined as,

h0 ≡ x0

Σh
0 = Σx

0

ht+1 ≡

 ht

ηt
wt+1

 (2.12)

Σh
t+1 =

Σh
t 0 0
0 Ση

t 0
0 0 INw


and a full-history dependent at can be expressed in the form,

at ≡ Gtht + ηt

ηt ∼ N (0,Ση
t )

for matrix Na × (Nx + t (Na +Nw)) matrix Gt and positive, semi-definite Na × Na

matrix Ση
t . Note that the size of the matrix Gt grows linearly with t.

Instead of looking for state-contingent policies that are jointly normal with the

history {at (ht)}∞t=0, we equivalently look for a sequence problem of choosing matrices

{Gt,Σ
η
t }

∞
t=0. This restriction ensures that the private sector can use the Kalman

update. These matrices are chosen before x0 or any other shocks realize. At time

t = −1, the policymaker is choosing the joint covariance of all future at with the

relevant histories. Note a significant difference from most other models: normally, Gt

would be chosen based on information available at time t. That is never the case in

this paper. The G0 that minimizes losses after knowing x0 is different than the one
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that minimizes losses knowing only the distribution of x0, i.e. Σx
0 . The policymaker

is committing to a certain policy and its informational effect on the private sector.

All the relevant matrices will be chosen based on Σx
0 or another covariance that is

calculable before any realizations take place. The underlying model is of stochastic

Gaussian shocks and variables, but the sequence problem of choosing matrices is

deterministic, and based on covariance matrices calculated before any shocks. I call

this informational position the unconditional perspective.

This contrasts with a full information model, where the policy can be decided

after x0 is realized. The difference is because under full information, a0 does not give

the private sector any additional information. So the optimal a0 (x0) can be chosen

state-by-state. For x̃0 ̸= x0, the choice of a0 (x0) does not affect outcomes under x̃0,

and therefore it does not affect the optimal choice a0 (x̃0) . However, when a0 informs

the private sector, the choice of a0 (x0) will affect how the private sector interprets z0

across more than just x0. Different z0 updating changes expectations and therefore

the optimal a0 (x̃0). For these reasons, the optimal policy a0 (x0) depends on the

entire distribution of Σx
0 , and cannot be calculated in isolation. Fortunately, optimal

choices of G0 and Ση
0 define the full policy, and are chosen based on Σx

0 .

To summarize, there are two reasons to prefer the sequence problem of {Gt,Σ
η
t }

∞
t=0

to the state-contingent problem of {at (ht)}∞t=0. First, by treating it as a sequence

problem of matrices, we guarantee that the private sector will be able to use a Kalman

filter to update their beliefs. Second, when at informs the private sector, it cannot

be solved for state-by-state. That is, we cannot find the optimal mapping x0 → a∗0

using only x0. The entire policy needs to be optimized, and the entire policy for a0

is captured in the matrices (G0,Σ
η
0).

Definition 2. A Full History Sequence (FHS) is a sequence of matrices, {Gt,Σ
η
t }

∞
t=0,

where Gt has size Na×(Nx + t (Na +Nw)), Ση
t is a positive, semi-definite Na × Na
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matrix. The set FH is the subset of FHS that when used to define at,

at = Gtht + ηt

ηt ∼ N (0,Ση
t )

meets the constraints (2.6), (2.7), (2.8), (2.9), and the Forward-Looking Constraint

for all t ≥ 0.

FH = {{Gt,Σ
η
t }

∞
t=0 : at = Gtht + ηt =⇒ model constraints are met ∀t ≥ 0}

Definition 3. The Full History Sequence Problem (FHSP) is,

V (Σx
0) = min

{Gt,Σ
η
t}∞

t=0
∈FH

E

{
∞∑
t=0

βtLt

}

for all t ≥ 0, where Σx
0 is a positive semi-definite matrix of size Nx × Nx, β ∈ [0, 1),

Lt is defined in (2.5), xt evolves according to (2.6), and at is defined as in Definition

2.

The FHSP represents a general policy for at that is jointly normal with the his-

tory of shocks ht. Solving such a general model is intractable because the num-

ber of parameters to choose at time t grows linearly with the length of the history:

Na

(
Nx + t (Na +Nw) +

1
2
(Na + 1)

)
.7 Unlike other informational structures or under

discretion, the problem cannot be solved by taking a first order condition on at. To

find the optimal policy we would need to consider the weights Gt and how they affect

the information updating of the private sector.

Definition 4. A Commitment Error Sequence (CES) is a sequence of matrices,

{Ge
t , G

c
t ,Σ

η
t }

∞
t=0, where Ge

t is a matrix of size Na×Nx, Gc
t is a matrix of size Na×Nxa,

7 The final term comes from Ση
t being symmetric.
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Ση
t is a positive, semi-definite Na×Na matrix. The set CE is the domain of CES that

when used to define at,

a0 = Ge
0x0 + η0

at+1 = Gc
t

[
xt|t
at|t

]
+Ge

t+1

(
xt+1 − xt+1|t

)
+ ηt+1

ηt ∼ N (0,Ση
t )xt+1|t

xt|t
at|t

 = E


xt+1

xt

at

 |Ipst


meets the constraints (2.6), (2.7), (2.8), (2.9), and the Forward-Looking Constraint

for all t ≥ 0.

CE = {{Ge
t , G

c
t ,Σ

η
t }

∞
t=0 : at defined above =⇒ model constraints are met ∀t ≥ 0}

Definition 5. The Commitment-Error Sequence Problem (CESP) is,

W (Σx
0) = min

{Ge
t ,G

c
t ,Σ

η
t}∞

t=0
∈CE

E

{
∞∑
t=0

βtLt

}

where Σx
0 is a positive semi-definite matrix of size Nx × Nx, β ∈ [0, 1), for all t ≥ 0,

Lt is defined in (2.5), xt evolves according to (2.6), and at is defined as in Definition

4.

The CESP has the crucial dimension reduction in the proof. Instead of choos-

ing ever-growing number of weights each period. The policymaker in the CESP is

choosing a fixed number of parameters for every t: Na

(
2Nx +Na +

1
2
(Na + 1)

)
.

Definition 6. An FHS or CES has the Span Property at time t iff

at+1|t ∈ span
(
xt|t, at|t

)
. That is, there exists a Na × Nxa matrix Gc

t such that

at+1|t = Gc
t

[
xt|t
at|t

]
.
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An FHS or CES has the Span Property iff it has the Span Property for all t ≥ 0.

By construction, all CES have the Span Property. In words, it requires that the

predictable behavior of at+1, given the private sector’s information at t, to depend

only on the private sector’s estimate of xt and at. By taking expectations and re-

arranging, the Forward-Looking Constraint for time t can be reformulated as two

separate constraints

J =
[
Jx Ja

]
0 = (D + JxA)

[
xt|t
at|t

]
+ Jaat+1|t

0 = D

[
xt − xt|t
at − at|t

]

The formulation above shows the intuition for why an optimal FHS would have

the Span Property. Extra variance in at+1 is weakly costly, and therefore so is extra

variation in at+1|t. However, it is useful for at+1|t to respond to xt|t and at|t. Propo-

sition 13 shows that any FHS without the Span Property at time t can be weakly

improved by modifying the sequence after t+1 so that it does have the Span Property

at time t. Proposition 16 shows that any FHS with the Span Property can have its

expected losses {E {Lt}}∞t=0 matched at each period by a CES.

Recursive Formulation of Constraints

Above, all constraints were phrased in terms of specific periods 0, t−1, t, or t+1. The

VBR will be recursive, so in this subsection I present the equivalent recursive version

of the constraints. In this subsection, subscript p will indicate the previous period, c

the current, and n the next. Policy will be determined based on augmented state yc,

defined below, and the matrices committed to based on the unconditional distribution

of yc, before any shocks are realized. All of the constraints and intermediate values

can be expressed in terms of yc, and the shocks before yn: ηc and wn. That alternative
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form requires a fair bit of linear algebra book keeping, and it is done in Appendix

A.1.

The augmented state yc has dimension Ny ≡ 2Nx +Na and is defined as,

yc ≡

 xc

xc|p
ac|p

 ∼ N (0,Σy)

and has the distribution implied by the covariance of those three random variables,

with [
xc|p
ac|p

]
= E

{[
xc

ac

]
|Ipsp
}

Augmented state yc is composed of the current backward-looking state xc, the previous

period’s private-sector expectation of xc, and the previous period’s private-sector

expectation of the current action ac. The final element, ac|p, is the commitment from

the previous period that must be followed through upon, i.e. ac must be chosen so

that the ac|p from the previous period was rational.

The action for period c will be determined as follows,

ac = ac|p +Ge (Σy)
(
xc − xc|p

)
+ ηc (2.13)

ηc ∼ N (0,Ση (Σy))

where Ge (Σy) is size Na×Nx, and Ση (Σy) is positive semi-definite size Na×Na, and

both were chosen by the policymaker from the unconditional perspective based on the

distribution of yc, Σy. Note that, for all yc, E
{
xc − xc|p|Ipsp

}
= 0 and E

{
ηc|Ipsp

}
=

0. Therefore, by constructing ac in this fashion, it guarantees that E
{
ac|Ipsp

}
=[

0 0 INa

]
yc. One aspect of the proof is that the distribution Σy is sufficient for the

policymaker to choose the an optimal Ge and Ση that performs as well as a FHS.

All of the numbered equations in this section can be calculated explicitly in terms

of yc, Σy, ηc, Ση, Ge, and Gc. I perform these calculations in Appendix A.1.
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Here are the recursive versions of the constraints that the functions must meet,

Lc =

[
xc

ac

]T
L

[
xc

ac

]
(2.14)

xn = A

[
xc

ac

]
+Bwn (2.15)

wn ∼ N (0, INw) (2.16)

The private sector’s information is no longer the history of shocks. Instead it is

the prior period’s estimates, that are part of yc, and the observed signal today,

zc = C

[
xc

ac

]
(2.17)

Ipsc =
{
xc|p, ac|p, zc

}
(2.18)

The private sector will use a Kalman filter to update their beliefs[
xc|c
ac|c

]
= E

{[
xc

ac

]
|Ipsc
}

=

[
xc|p
ac|p

]
+Kxa

(
z − C

[
xc|p
ac|p

])
(2.19)

where the Kxa depends on Σy, Ge, and Ση, and its formula is given in equation (A.2)

in Appendix A.1.

For input to the recursive call, I require[
xn|c
an|c

]
=

[
A

Gc (Σy)

] [
xc|c
ac|c

]
(2.20)

where Gc (Σy) size Na ×Nxa and is the third matrix chosen by the policymaker from

the unconditional perspective. Together, equations (2.15) and (2.20) define yn, and

therefore its distribution as well.

yn ≡

 xn

xn|c
an|c

 (2.21)

yn ∼ N (0,Σy
n)
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with equation (A.4) in Appendix A.1 having an explicit definition of yn and Σy
n.

This is consistent with how an (Σ
y
n) will be constructed (changing subscript to be

consistent with this period from c to n and p to c):

an (Σ
y
n) = an|c +Ge (Σy

n)
(
xn − xn|c

)
+ ηn

E {an (Σy
n) |Ipsc } = an|c

For all potential Σy, it must be the case that the recursive version of the Forward-

Looking Constraint also holds,

0 = D

[
xc

ac

]
+ J

[
xn|c
an|c

]

= D

[
xc

ac

]
+ J

[
A
Gc

] [
xc|c
ac|c

]
(2.22)

which the appendix shows how to check for a given Σy. In particular, Lemma 24

proves that from Σy, Ge, Gc, and Ση we can check whether the Forward-Looking

Constraint holds for all possible
[
yc
ηc

]
.

Definition 7. Define VB as the domain of valid functions for Ge (Σy) , Gc (Σy) ,Ση (Σy)

for the Value Bellman Problem, in the next definition. They are used to define ac (Σy).

Let Σy be such that

yc =

 xc

xc|p
ac|p

 ∼ N (0,Σy)

and define ac as

ac = ac|p +Ge (Σy)
(
xc − xc|p

)
+ ηc

ηc ∼ N (0,Ση (Σy))

where Σy is a positive, semi-definite Ny × Ny matrix, Ge (Σy) has size Na × Nx,

Gc (Σy) has size Na×Nxa, Ση (Σy) is a positive, semi-definite matrix of size Na×Na.
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Constraints (2.14), (2.16), (2.17), (2.18), and (2.22) are met for all possible
[
yc
ηc

]
.

VB =

{
Ge (Σy) , Gc (Σy) ,Ση (Σy) :

ac as defined above =⇒ model constraints are met ∀Σy,

[
yc
ηc

]}

Definition 8. The Variance Bellman Problem (VBP) is,

U (Σy) = min
{Ge,Gc,Ση}∈VB

E {Lc}+ βU (Σy
n)

yn ∼ N (0,Σy
n)

where Σy is a positive, semi-definite matrix of size (2Nx +Na)×(2Nx +Na), β ∈ [0, 1),

Lc as defined in (2.14), the definition of VB ensures all constraints are met, and yn is

defined in (2.21).

The VBP has policy functions have the same dimensions as one period of a CES,

with Na

(
2Nx +Na +

1
2
(Na + 1)

)
weights. The key difference is that they are func-

tions instead of sequences. The domain of the functions is possible augmented state

covariance matrices for any period, Σy. In the VBP formulation, the choices of ma-

trices this period trade off costs in terms of losses for this period with the discounted

losses of all future periods, represented by U (Σy
n). Normal recursive effects of Ge and

Ση are that they will affect costs today and the transition and therefore distribution

for xn. The additional effect due to signaling is that they will affect the information in

zc and therefore the accuracy of xn|c, which is part of the next augmented state yn. Via

commitment, Gc determines an|c which can mitigate this period’s Forward-Looking

Constraint, and is also part of yn with associated future costs.

Note U is recursive in the covariances through time. It represents the discounted

expected losses for the infinite problem. It formed by the expected loss for this
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period plus the discounted infinite losses starting next period. At its root, however is

choosing the optimal matrices for the specific period given augmented state covariance

matrix Σy for that period. Like the FHSP and CESP, all the matrices are chosen from

the unconditional perspective, before any shocks realize. The VBP is a convenient

formulation for choosing the optimal matrices recursively, but those matrices are still

chosen at t = −1.

2.4 Equivalence of FHSP, CESP, and VBP

In this paper I assume existence of optimal solutions to FHSP, CESP, and VBP, i.e.

there exists at least one minimand for each problem and the value functions are well

defined. Below, I outline the way that the problems are proven to be equivalent with

V (Σx
0) = W (Σx

0) = U

Σx
0 0 0
0 0 0
0 0 0


The equivalence of FHSP and CESP is shown in Theorem 18. It uses corollary 14

to show that there exists an optimal FHS with the Span Property. Then, Proposition

16 shows that any FHS with the Span Property can have its expected losses matched

with a properly constructed CES. Combined these results show that the optimal

FHS cannot outperform the optimal CES. Proposition 17 shows that any CES has a

corresponding FHS that has the same at and therefore losses. Thus, the optimal CES

cannot outperform the optimal FHS, and the problems are equivalent.

The equivalence of CESP and VBP is shown in Theorem 19, which is simpler. It

does this by showing that expectations work appropriately and that Σy is a sufficient

statistic for the recursive part of VBP.

The most complicated part of the proof is the one on which corollary 14 is based:

Proposition 13 showing that an FHS in FH without the Span Property can be weakly

improved into one that has the Span Property. Proposition 13 relies on changing the
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behavior on the subspace that violates the Span Property.

2.4.1 Proof of Equivalence

Lemma 9. Let FHS {Gt,Σ
η
t }

∞
t=0 ∈ FH. The private-sector’s estimation of the history

depends on the matrices up to t, and forms a projection matrix Pt+1|t
(
{Gτ ,Σ

η
τ}

t
τ=0

)
of size Nh,t+1 ×Nh,t+1,

E {ht+1|Ipst } = ht+1|t

= Pt+1|tht+1

ht+1|t = Pt+1|tht+1|t

Proof. First, construct the Nx×Nht matrix φt inductively, so that xt = φtht. h0 = x0,

so φ0 = INx .

xt+1 = A

[
xt

at

]
+Bwt+1

= A

([
φt

Gt

]
ht +

[
0
INa

]
ηt

)
+Bwt+1

ht+1 =

 ht

ηt
wt+1


φt+1 =

[
A

[
φt 0
Gt INa

]
B

]

Initially, h0|−1 = x0|−1 = 0, so P0|−1 = 0Nx×Nx . Now the inductive step is to use

Pt|t−1, φt, Gt, and Ση
t to construct Pt+1|t.
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First calculate how ht+1|t−1 depends on the prior Pt|t−1.

ht+1|t−1 =

ht|t−1

0
0



=

Pt|t−1

0
0

ht

= Pt+1|t−1ht+1

Pt+1|t−1 =

Pt|t−1 0 0
0 0 0
0 0 0


where Pt+1|t−1 has size Nh,t+1 ×Nh,t+1 because wt+1|t−1 = 0 and ηt|t−1 = 0.

Now consider the information effect of zt.

zt = C

[
xt

at

]
= Ctht+1

Ct ≡ C

[
φt 0 0
Gt INa 0

]

where Ct has size Nz ×Nh,t+1, and the last column of the final matrix is 0s because

wt+1 does not affect zt (but ηt does, hence ht+1 instead of ht).

Now we can calculate zt|t−1, and the prediction error,

zt|t−1 = Ctht+1|t−1 = CtPt+1|t−1ht+1

zt − zt|t−1 = Ct

(
ht+1 − ht+1|t−1

)
In this paper, when calculating uncertainties with respect to the private sector’s

information for any variable b, I will use the form Σb
t to represent the variance of bt,

Σb
t|t−1 to represent the variance of the private sector’s estimate bt|t−1, and Σ

b|ps
t|t−1 to

represent the variance of the private sector’s prediction error
(
bt − bt|t−1

)
. Applying
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that notation here,

Σh
t+1 =

Σh
t 0 0
0 Ση

t 0
0 0 Σw


Var

(
ht+1|t−1

)
= Σh

t+1|t−1 = Pt+1|t−1Σ
h
t+1P

T
t+1|t−1

Var
(
ht+1 − ht+1|t−1

)
= Σ

h|ps
t+1|t−1 = Σh

t+1 − Σh
t+1|t−1

Var
(
zt − zt|t−1

)
= Σ

z|ps
t|t−1 = CtΣ

h|ps
t+1|t−1C

T
t

where Σh
t+1, Σh

t+1|t−1, and Σ
h|ps
t+1|t−1 are positive, semi-definite matrices of size Nh,t+1 ×

Nh,t+1; Σ
z|ps
t|t−1 is a positive, semi-definite matrix of size Nz ×Nz.

The Kalman update for the private sector will have the form

ht+1|t = ht+1|t−1 +Kh
t

(
zt − zt|t−1

)
where Kh

t has size Nh,t+1 ×Nz. I show in Appendix A.2 how to calculate an optimal

Kh
t even if Σz|ps

t|t−1 is not full rank,

Kh
t ≡ Σ

h|ps
t+1|t−1C

T
t

(
Σ

z|ps
t|t−1

)+
where

(
Σ

z|ps
t|t−1

)+
is the Moore–Penrose pseudoinverse. The prediction then becomes

ht+1|t = ht+1|t−1 +Kh
t

(
Ctht+1 − Ctht+1|t−1

)
= Kh

t Ctht+1 +
(
I −Kh

t Ct

)
ht+1|t−1

= Pt+1|tht+1

Pt+1|t =
(
Kh

t Ct +
(
I −Kh

t Ct

)
Pt+1|t−1

)
Through the series of calculations, Pt+1|t depended on Gt, Ση

t , φt, and Pt|t−1. Thus,

it is a function of {Gτ ,Σ
η
τ}

t
τ=0.

42



The prior lemma was a matter of accumulating policies Gt and Ση
t , to track how

the private sector would calculate their Kalman updates based on zt. From that, along

with the dynamics of xt, we can calculate the projection Pt+1|t that maps shocks to

the private sector’s estimates of those shocks.

In the next proposition, I will be using a fact about unconditional expectations of

mean-zero Gaussian linear systems.

Lemma 10. In general, the losses at time t will be

E {Lt} = E

{[
xt

at

]T
L

[
xt

at

]}
=

〈
L,Var

([
xt

at

])〉
F

where ⟨A,B⟩F is the Frobenius inner product, defined as ⟨A,B⟩F =
∑

i,j aijbij.

Proof. Let b be a mean-zero random vector of length Nb, c be a mean-zero random

vector of length Nc, and M be a constant matrix of size Nb ×Nc,

E
{
bTMc

}
= E

{∑
i,j

biMijcj

}

=
∑
i,j

MijE {bicj}

= ⟨M,Cov (b, c)⟩F

Definition 11. Let τ ≥ 0, and t ≥ τ + 1. Let Ht be the vector space of potential

histories ht. ht|τ , xτ , and aτ are linear mappings on that space

ht|τ =

[
hτ+1|τ

0

]
=

[
Pτ+1|τ 0

0 0

]
ht

xτ = φτhτ =
[
φτ 0

]
ht

aτ = Gτhτ + ητ =
[
Gτ INa 0

]
ht
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Define the subspace

H∗τ
t ≡

{
ht : ht|τ = ht ∧ xτ = 0 ∧ aτ = 0

}
The superscript τ indicates the constraints depend on x, a, and Ips from period τ .

Because all the constraints are based on linear conditions, H∗τ
t is a subspace and

has an associated projection P ∗τ
t . Ht can be partitioned into H∗τ

t and its orthogonal

compliment, H∗τ⊥
t ,

ht = h∗τ
t + h∗τ⊥

t

h∗τ
t = P ∗τ

t ht ∈ H∗τ
t

h∗τ⊥
t = (I − P ∗τ

t )ht ∈ H∗τ⊥
t

Likewise, any vector xt−1 or at−1
8 can be decomposed into its projection onto H∗τ

t

and H∗τ⊥
t :

at−1 =
[
Gt−1 INa 0

]
ht

= a∗τt−1 + a∗τ⊥t−1

a∗τt−1 =
[
Gt−1 INa 0

]
h∗τ
t

=
[
Gt−1 INa 0

]
P ∗τ
t ht

a∗τ⊥t−1 =
[
Gt−1 INa 0

]
(I − P ∗τ

t )ht

and similarly for xt−1 =
[
φt−1 0 0

]
ht.

There are two special features of H∗τ
τ+1. The first is that expectations based on

Ipsτ are entirely accurate. It is a subspace of the space of the expectation projection

from Lemma 9,

h∗τ
τ+1 ∈ H∗τ

τ+1 =⇒ h∗τ
τ+1 = Pτ+1|τh

∗τ
τ+1

This means that P ∗τ
τ+1 = P ∗τ

τ+1Pτ+1|τ = Pτ+1|τP
∗τ
τ+1.

8 Ht is necessary to specify at−1, because at−1 depends in part on ηt−1 which is not in ht−1.
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Second, note also that for all t ≥ τ + 1, h∗τ
t ∈ H∗τ

t implies that for all s such that

t ≥ s ≥ τ + 1 inside h∗τ
t , ws = 0, and for all t > s′ ≥ τ + 1 ηs′ = 0. (ηt is not inside

ht).

Lemma 12. An FHS {Gt,Σ
η
t }

∞
t=0 has the Span Property at time τ ⇐⇒ a∗ττ+1|τ = 0

for all hτ+1 ∈ Hτ+1.

Proof. =⇒ Let hτ+1 ∈ Hτ+1, and let h∗τ
τ+1 = P ∗τ

τ+1hτ+1. One of the conditions of

H∗τ
τ+1 is that predictions based on Ipsτ are accurate, . Therefore, h∗τ

τ+1 = Pτ+1|τh
∗τ
τ+1.

Combining with the fact that within H∗τ
τ+1, xτ = aτ = 0,

x∗τ
τ |τ =

[
φt 0 0

]
Pτ+1|τh

∗τ
τ+1

=
[
φt 0 0

]
h∗τ
τ+1 = x∗τ

τ = 0

a∗ττ |τ =
[
Gτ INa 0

]
Pτ+1|τh

∗τ
τ+1

=
[
Gτ INa 0

]
h∗τ
τ+1 = a∗ττ = 0

thus, span
(
x∗τ
τ |τ , a

∗τ
τ |τ

)
= span ({0}), and the Span Property implies a∗ττ+1|τ = 0.

⇐= By proving the contrapositive ¬A =⇒ ¬B. Assume the FHS does not have

the Span Property at time τ . Define vτ+1|τ ≡ aτ+1|τ − E
{
aτ+1|τ |xτ |τ , aτ |τ

}
. Note, by

construction E
{
vτ+1|τ |xτ |τ , aτ |τ

}
= 0, i.e. vτ+1|τ is independent of

(
xτ |τ , aτ |τ

)
.

By the assumption, it must be the case that Var
(
vτ+1|τ

)
̸= 0. Let Pv be the

Na ×Nh,τ+1 mapping from hτ+1|τ to vτ+1|τ , so vτ+1|τ = PvPτ+1|τhτ+1. Because vτ+1|τ

is independent of
(
xτ |τ , aτ |τ

)
and has non-zero variance, there must exist an hτ+1 such

that 3 things are true

vτ+1|τ = PvPτ+1|τhτ+1 ̸= 0

aτ |τ =
[
Gτ INa 0

]
Pτ+1|τhτ+1 = 0

xτ |τ =
[
φt 0 0

]
Pτ+1|τhτ+1 = 0
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Let hτ+1|τ ≡ Pτ+1|τhτ+1. By the conditions on hτ+1, three things are true:

hτ+1|τ = Pτ+1|τhτ+1|τ

0 =
[
Gτ INa 0

]
hτ+1|τ

0 =
[
φt 0 0

]
hτ+1|τ

Combined, they imply hτ+1|τ ∈ H∗τ
τ+1. The a∗ττ+1|τ for hτ+1|τ is

aτ+1|τ = Gτ+1hτ+1|τ

= vτ+1|τ ̸= 0

This lemma shows how H∗τ
τ+1 is a useful subspace of Hτ+1. Is is precisely the one

on which violations of the Span Property for time τ can take place. The key step

in the next proposition is to change aτ+1 to be zero on that subspace so that the

constructed FHS has the Span Property at time τ .

Proposition 13. Let FHS {Gt,Σ
η
t }

∞
t=0 ∈ FH such that it does not have the Span

Property at time τ ≥ 0. Then, there exists a new FHS
{
G̃t,Σ

η
t

}∞

t=0
∈ FH with the

Span Property at τ and weakly lower costs.

Proof. This is a constructive proof, as we will build the new sequence using the

projections onto H∗τ
t , for t ≥ τ + 1.

The original FHS had

aτ+1 = Gτ+1hτ+1 + ητ+1

and

aτ+1|τ = Gτ+1hτ+1|τ = Gτ+1Pτ+1|τhτ+1

Because the original FHS does not have the Span Property at τ , the lemma above

shows that when decomposed

∃h∗τ
τ+1 ∈ H∗τ

τ+1 such that a∗ττ+1|τ = Gτ+1h
∗τ
τ+1 ̸= 0
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For all time, the new FHS will have the same {Ση
t }

∞
t=0. Additionally, the new

FHS will have the same choices for ∀t ≤ τ , G̃t = Gt. Note, the full set of subspaces

{H∗τ
t }∞t=τ+1 depend on Ipsτ . Ipsτ hasn’t changed, because as Lemma 9 shows, Pτ+1|τ

depends only on {Gt,Σ
η
t }

τ
t=0, and those matrices remain the in the new FHS.

The new FHS for time τ + 1 is

ãτ+1 = G̃τ+1hτ+1 + ητ+1

G̃τ+1 ≡ Gτ+1

(
I − P ∗τ

τ+1

)
To see how the new G̃τ+1 affects things, decompose ãτ+1|τ as discussed in Definition

11, starting first with ã∗ττ+1|τ ,

ãτ+1|τ = ã∗ττ+1|τ + ã∗τ⊥τ+1|τ

ã∗ττ+1|τ = G̃τ+1Pτ+1|τP
∗τ
τ+1hτ+1

= G̃τ+1P
∗τ
τ+1hτ+1

= Gτ+1

(
I − P ∗τ

τ+1

)
P ∗τ
τ+1hτ+1

= Gτ+10 = 0

with the third equation being because Pτ+1|τP
∗τ
τ+1 = P ∗τ

τ+1. By right multiplying Gτ+1

by
(
I − P ∗τ

τ+1

)
, ã∗ττ+1|τ = 0. By the lemma, this means that the new FHS

{
G̃t

}∞

t=0
will

have the Span Property at time τ .

See that ã∗ττ+1|τ = 0 complies with the Forward-Looking Constraint at time τ

because, x∗τ
τ = 0, a∗ττ = 0, x∗τ

τ |τ = 0, a∗ττ |τ = 0, x∗τ
τ+1|τ = A

[
x∗τ
τ |τ

a∗ττ |τ

]
= 0,

0 = D

[
x∗τ
τ

a∗ττ

]
+ J

[
x∗τ
τ+1|τ

ã∗ττ+1|τ

]

H∗τ
τ+1 is constructed so that all the terms in the constraint besides ã∗ττ+1|τ are 0.
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Now consider what happens with ã∗τ⊥τ+1|τ . First, observe that P ∗τ
τ+1Pτ+1|τ = P ∗τ

τ+1.

Therefore,

ã∗τ⊥τ+1|τ = G̃τ+1Pτ+1|τ
(
I − P ∗τ

τ+1

)
hτ+1

= Gτ+1

(
I − P ∗τ

τ+1

)
Pτ+1|τ

(
I − P ∗τ

τ+1

)
hτ+1

= Gτ+1

(
Pτ+1|τ − P ∗τ

τ+1

) (
I − P ∗τ

τ+1

)
hτ+1

= Gτ+1Pτ+1|τ
(
I − P ∗τ

τ+1

)
hτ+1

= Gτ+1Pτ+1|τh
∗τ⊥
τ+1

= a∗τ⊥τ+1|τ

In other words, for h∗τ⊥
τ+1 in the orthogonal compliment, the expected behavior is

exactly the same as before. Thus the Forward-Looking Constraint also holds on

H∗τ⊥
τ+1 , because the ã∗τ⊥t+1 behavior is unchanged, ã∗τ⊥τ+1|τ = a∗τ⊥τ+1|τ

D

[
x∗τ⊥
τ

a∗τ⊥τ

]
+ J

[
x∗τ⊥
τ+1|τ

ã∗τ⊥τ+1|τ

]
= D

[
x∗τ⊥
τ

a∗τ⊥τ

]
+ J

[
x∗τ⊥
τ+1|τ

a∗τ⊥τ+1|τ

]
= 0

To summarize, we’ve shown so far that we generate
{
G̃t

}τ+1

t=0
through τ + 1

G̃t =

{
Gt t ≤ τ

Gt

(
I − P τ∗

τ+1

)
t = τ + 1

and that this FHS has the Span Property at time τ , as well as meeting the τ -period

Forward-Looking Constraint. We also showed that when partitioned into the subspace

H∗τ
τ+1 and its orthogonal compliment

x∗τ
τ = x∗τ

τ |τ = 0

a∗ττ = a∗ττ |τ = 0

x∗τ
τ+1 = x∗τ

τ+1|τ = 0
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By Lemma 12, because Gτ+1 did not have the Span Property, there

∃hτ+1.a
∗
τ+1|τ (hτ+1) ̸= 0. Which is not the case for G̃τ+1. When constructing the

rest of the FHS,
{
G̃t

}∞

t=τ+2
, we must deal with the fact that

a∗ττ+1 = Gτ+1h
∗τ
τ+1 ̸= 0

could have follow on consequences for subsequent xτ+2, aτ+2, xτ+3, etc. We construct{
G̃t

}∞

t=τ+2
that are consistent with the new G̃τ+1.

One of the conditions of H∗τ
t is that they have private-sector perfect foresight, i.e.

expectations based on Ipsτ are perfectly accurate. This implies wt|τ = 0 and ηt|τ = 0

for all t ≥ τ + 1. We use the corresponding projections P ∗τ
t to define all following G̃t

as we did G̃τ+1,

G̃t ≡

{
Gt t ≤ τ

Gt (I − P ∗τ
t ) t ≥ τ + 1

Again consider the partition for t ≥ τ + 1

at = a∗τt + a∗τ⊥t

xt = xτ∗
t + x∗τ⊥

t

By construction of H∗τ
τ+1, it was the case that x∗τ

τ+1 = 0, but that need not have been

the case for x∗
t = 0 for t > τ +1 . The variation was not coming from wt−1 or ηt−1 as

those are both 0. Instead it, was coming from potentially non-zero a∗τt−1.

The newly defined ãt has the property, however, that ã∗τt = 0 for all t ≥ τ + 1.

Because x̃∗τ
τ+1 = x∗τ

τ+1 = 0, and ã∗τs = w∗τ
s = 0 for all τ + 1 ≤ s ≤ t, x̃∗τ

t = 0. Again,

recall that h∗τ
t|τ = h∗τ

t , and wt|τ = ηt|τ = 0. So, under the new FHS ã∗τt = 0 and

x̃∗τ
t = 0. This meets the Forward-Looking Constraints.

The FHS is designed so that it does not change outcomes in the orthogonal

complement. ã∗⊥τ
t =

[
G̃t INa 0

]
h∗⊥τ
t+1 . Note that η∗τ⊥t+1 = ηt+1. Also, G̃th

∗τ⊥
t =

Gt (I − P τ∗
t )h∗τ⊥

t = Gth
∗τ⊥
t . Together these show that ã∗τ⊥t = a∗τ⊥t .
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As H∗τ
t has no prediction errors, it does not affect zt−zt|t−1. Therefore, information

updating will be exactly as before. Because actions are the same, and information

updating is the same, the Forward-Looking Constraints will hold on H∗τ⊥
t . Therefore,

the Forward-Looking Constraints are met for all t ≥ τ + 1. And we have

ãt = a∗τ⊥t

x̃t = x∗τ⊥
t

so the variance will be weakly lower, as will losses

Var
([

at
xt

])
≥ Var

([
ãt
x̃t

])
〈
L,Var

([
at
xt

])〉
F

≥
〈
L,Var

([
ãt
x̃t

])〉
F

To summarize, if at+1|t has variance beyond xt|t and at|t, then we can weakly

reduce losses while maintaining the Forward-Looking Constraints by mapping that

additional variance to 0. Put another way, at+1|t has two potential uses: (i) to mitigate

the period t Forward-Looking Constraint in response to xt|t, at|t, or xt+1|t; or (ii) to

respond to xt+1|t for future losses or Forward-Looking Constraints. However, all of

these depend on xt|t, at|t, or xt+1|t, and xt+1|t = A

[
xt|t
at|t

]
, so the span of

(
xt|t, at|t

)
suffices. Additionally, any variance of at+1|t cannot be a surprise, so it cannot change

the information effect of future periods. In conclusion, the variance of at+1|t beyond

the mentioned span cannot help, and only serves to potentially increase losses.

Corollary 14. There exists an optimal FHS {Gt,Σ
η
t }

∞
t=0 ∈ FH with the Span Prop-

erty.

Proof. Start with an optimal FHS, iterate forward through time weakly improving

it at each time t where it does not have Span Property using Proposition 13. Once
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finished, it will have the Span Property for all t. Because the original FHS was an

optimal one, losses will not decrease, but the proposition shows that they will not

increase either. The fully improved FHS will also be an optimal one.

This corollary is crucial to the proof because it allows us to restrict our analysis to

optimal FHS with the Span Property. We will see that this subset of FHS have losses

that can be precisely matched by a CES. Appendix A.4.2 shows an example of an

FHS without the Span Property, how a CES could not have matched its covariances,

and how Proposition 13 would weakly improve it to one with the Span Property.

Lemma 15. Let at be defined by either an FHS or CES with the Span Property at time

t ≥ 0, i.e. at+1|t = Gc
t

[
xt|t
at|t

]
for some Na×Nxa Gc

t . Further define the Ny ≡ 2Nx+Na

element augmented state yt be defined as below with distribution Σy
t

yt ≡

 xt

xt|t−1

at|t−1

 ∼ N (0,Σy
t )

Then, three things can be calculated based on the definitions above and Var
([

yt
at

])
:

(i) the expected losses at period t, E {Lt}; (ii) whether the Forward-Looking Constraint

is met at time t; and (iii) the next augmented state, yt+1, and its, Σy
t+1.

Proof. First, define three convenience Nxa×2Nxa matrices9 that select the true values,

the private sector’s prior estimate, and the private sector’s prediction error for
[
xt

at

]
9 These matrices have no time t subscript because they are constant.
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from
[
yt
at

]
,

exa ≡
[
I 0 0 0
0 0 0 I

]
[
xt

at

]
= exa

[
yt
at

]

exa|−1 ≡
[
0 I 0 0
0 0 I 0

]
[
xt|t−1

at|t−1

]
= exa|−1

[
yt
at

]
e
xa|ps
|−1 ≡ exa − exa|−1[

xt − xt|t−1

at − at|t−1

]
= e

xa|ps
|−1

[
yt
at

]

(i) Losses: Observe,

Var
([

xt

at

])
= exaVar

([
yt
at

])
(exa)T

and then by Lemma 2.4.1,

Lt =

〈
L,Var

([
xt

at

])〉

=

〈
L, exaVar

([
yt
at

])
(exa)T

〉

(ii) Constraint: The Forward-Looking Constraint at time t is

0 = D

[
xt

at

]
+ J

[
xt+1|t
at+1|t

]

Observe that from (2.6) and the assumption we have

[
xt+1|t
at+1|t

]
=

[
A
Gc

t

] [
xt|t
at|t

]
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Here are the steps to calculate xt|t and at|t. First, calculate the variance of the

private-sector prediction errors,[
xt − xt|t−1

at − at|t−1

]
= e

xa|ps
|−1

[
yt
at

]
∼ N

(
0,Σ

xa|ps
t|t−1

)
Σ

xa|ps
t|t−1 = e

xa|ps
|−1 Var

([
yt
at

])(
e
xa|ps
|−1

)T

zt = C

[
xt

at

]
, so the prediction error for zt and its variance are

zt − zt|t−1 = C

[
xt − xt|t−1

at − at|t−1

]
∼ N

(
0,Σ

z|ps
t|t−1

)
Σ

z|ps
t|t−1 = CΣ

xa|ps
t|t−1C

T

Appendix A.2 shows that an optimal Kalman update is

Kxa
t ≡ Σ

xa|ps
t|t−1C

T
(
Σ

z|ps
t|t−1

)+
and [

xt|t
at|t

]
=

[
xt|t−1

at|t−1

]
+Kxa

t

(
zt − zt|t−1

)
=
(
exa|−1 +Kxa

t Ce
xa|ps
|−1

)[yt
at

]
So the Forward-Looking Constraint can be checked by whether the following equal-

ity is met for all realizable yt, at, in the same fashion as Lemma 24 in Appendix A.1,

0 =

(
Dexa + J

[
A
Gc

t

](
exa|−1 +Kxa

t Ce
xa|ps
|−1

))[yt
at

]
(iii) The next augmented state, yt+1, and its, Σy

t+1

This flows naturally from things we have already calculated. Define

Axa
t+1|t ≡

[
A
Gc

t

](
exa|−1 +Kxa

t Ce
xa|ps
|−1

)
[
xt+1|t
at+1|t

]
= Axa

t+1|t

[
yt
at

]
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Now observe

yt+1 ≡

 xt+1

xt+1|t
at+1|t

 =

[
Aexa

Axa
t+1|t

] [
yt
at

]
+

B0
0

wt+1

∼ N
(
0,Σy

t+1

)
Σy

t+1 =

[
Aexa

Axa
t+1|t

]
Var

([
yt
at

])([
Aexa

Axa
t+1|t

])T

+

B0
0

B0
0

T

Lemma 15 shows that for an FHS or CES with the Span Property at t, Σy
t is

a sufficient statistic for calculating the concurrent effects of the distribution of at.

From the joint distribution of (yt, at), it is possible to calculate the expected losses

and whether the Forward-Looking Constraint is met.

Proposition 16. Let FHS {Gt,Σ
η
t }

∞
t=0 ∈ FH with the Span Property. There exists

a CES
{
Ge

t , G
c
t ,Σ

η̃
t

}∞

t=0
∈ CE with the same expected losses at every period.

Proof. This proof is done by constructing the CES recursively. Because FHS has

the Span Property, there exists a sequence of Na × Nxa matrices {Gc
t}

∞
t=0 such that

at+1|t = Gc
t

[
xt|t
at|t

]
for all t. These will be the ones used in the CES.

Based on Lemma 15, it suffices to show that Σy
0 is the same, and that for all t ≥ 0

FHS and CES have the same Var
([

yt
at

])
.

Under any FHS or CES,

Σy
0 =

Σx
0 0 0
0 0 0
0 0 0


as the private sector has no information before t = 0.
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The inductive step is to show that given Σy
t is the same under both sequences, we

can choose Ge
t and Ση̃

t of the CES so that Var
([

yt
at

])
is the same as under the FHS.

It is potentially the case that the η̃t in the CES will have a different variance than

the ηt in the FHSP. See Appendix A.4.1 for such an example.

From the FHS calculate the distribution of the random vector of private-sector

prediction errors, with e
xa|ps
|−1 as defined in the lemma,[

xt − xt|t−1

at − at|t−1

]
= e

xa|ps
|−1

[
yt
at

]
∼ N

(
0,

[
Σ

x|ps
t|t−1 Σ

xa|ps
t|t−1

Σ
ax|ps
t|t−1 Σ

a|ps
t|t−1

])
[
Σ

x|ps
t|t−1 Σ

xa|ps
t|t−1

Σ
ax|ps
t|t−1 Σ

a|ps
t|t−1

]
= e

xa|ps
|−1 Var

([
yt
at

])(
e
xa|ps
|−1

)T
Appendix A.3 shows that choosing Ge

t and Ση̃
t as below will replicate the distri-

bution of private-sector prediction errors,10

Ge
t ≡ Σ

ax|ps
t|t−1

(
Σ

x|ps
t|t−1

)+
Ση̃

t ≡ Σ
a|ps
t|t−1 − Σ

ax|ps
t|t−1

(
Σ

x|ps
t|t−1

)+
Σ

xa|ps
t|t−1(

at − at|t−1

)
= Ge

t

(
xt − xt|t−1

)
+ η̃t

η̃t ∼ N
(
0,Ση̃

t

)
By replicating the prediction error covariance, we see that the definition of at in

CES, at = at|t−1 +Ge
t

(
xt − xt|t−1

)
+ η̃t replicates Var

([
yt
at

])
from the FHS.

As Σy
t and Var

([
yt
at

])
are the same, Lemma 15 shows that the losses will be

the same, the CES will meet the Forward-Looking Constraint, and Σy
t+1 will be the

10 This is where allowing ηt in the definition for at is extremely helpful. If CES did not have ηt,

we’d have to limit our analysis to FHS for which Σ
a|ps
t|t−1 = Σ

ax|ps
t|t−1

(
Σ

x|ps
t|t−1

)+
Σ

xa|ps
t|t−1 , i.e. there is no

variation in the private-sector prediction error for at beyond its covariance with the private-sector
prediction error for xt.
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same.

The above theorem shows that the losses of an FHS from FH with the Span

Property can be matched exactly with a CES from CE . It uses the {Gc
t}

∞
t=0 from the

FHS having the Span Property, and recursively chooses
{
Ge

t ,Σ
η̃
t

}∞

t=0
to match the

joint covariance of yt and at at every period t. Crucially, this implies that the losses

for an optimal FHS with the Span Property can be attained by a CES as well.

The next proposition shows that we can go in the opposite direction as well. Every

CES has a corresponding FHS.

Proposition 17. Given a CES {Ge
t , G

c
t ,Σ

η
t }

∞
t=0 ∈ CS, there exists an FHS {Gt,Σ

η
t }

∞
t=0 ∈

FH that has the same at at all times.

Proof. Let CES {Ge
t , G

c
t ,Σ

η
t }

∞
t=0 ∈ CS, meaning that for t ≥ 0

a0 = Ge
0x0 + η0

at+1 = Gc
t

[
xt|t
at|t

]
+Ge

t+1

(
xt − xt+1|t

)
+ ηt+1

ηt ∼ N (0,Ση
t )

We wish to calculate {Gt}∞t=0 so that at = Gtht + ηt. (We will be keeping Ση
t the

same.)

We do this inductively, accumulating two utility matrices, P xa
t−1|t−1 and φt, such

that [
xt−1|t−1

at−1|t−1

]
= P xa

t−1|t−1ht

xt = φtht
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As a reminder

h0 = x0 ∼ N (0,Σx
0)

ht+1 =

 ht

ηt
wt+1

 ∼ N
(
0,Σh

t+1

)

Σh
t+1 =

Σh
t 0 0
0 Ση

t 0
0 0 Σw


We initialize the two utility matrices

P xa
−1|−1 =

[
0
0

]
φ0 = INx

For t = 0

G0 = Ge
0

a0 = G0h0 + η0

Now for every t ≥ 1, calculate

at = Gc
t−1

[
xt−1|t−1

at−1|t−1

]
+Ge

t

(
xt − xt|t−1

)
+ ηt

xt|t−1 = A

[
xt−1|t−1

at−1|t−1

]
Gt = Gc

t−1P
xa
t−1|t−1 +Ge

t

(
φt − AP xa

t−1|t−1

)
at = Gtht + ηt

This is a crucial calculation for this step. Combining P xa
t−1|t−1, φt, and A with choices

Gc
t−1 and Ge

t , we calculate the exact Gt that will have the same at as the CES. Ση
t

remains the same in both the CES and FHS.

Now however, we need to do the more complicated calculation of P xa
t|t to be used

next period. To do that we will have to calculate the Kalman updating, which will

57



depend on the uncertainty in (xt, at). Observe[
xt|t−1

at|t−1

]
=

[
A

Gc
t−1

]
P xa
t−1|t−1ht

Define the utility matrix P
xa|ps
t|t−1 , and error in projection onto ht as,

P
xa|ps
t|t−1 ≡

[
I
Ge

t

] (
φt − AP xa

t−1|t−1

)
[
xt − xt|t−1

at − at|t−1

]
= P

xa|ps
t|t−1 ht +

[
0
ηt

]
The covariance of the error is then

Σ
xa|ps
t|t−1 = P

xa|ps
t|t−1 Σ

h
t

(
P

xa|ps
t|t−1

)T
+

[
0 0
0 Ση

t

]
Then the Kalman update is the familiar

Kxa
t ≡ Σ

xa|ps
t|t−1C

T
(
CΣ

xa|ps
t|t−1C

T
)+

Now we can to bookkeeping to track the update[
xt|t
at|t

]
=

[
xt|t−1

at|t−1

]
+Kxa

t

(
zt − zt|t−1

)
= (I −Kxa

t C)

[
xt|t−1

at|t−1

]
+Kxa

t C

[
xt

at

]

= (I −Kxa
t C)

[
A
Gc

t

]
P xa
t−1|t−1ht +Kxa

t C

[
φt

Gt

]
ht +Kxa

t C

[
0
INa

]
ηt

Define the first part that gets applied to ht, and then construct P xa
t|t

P
xa|h
t|t ≡ (I −Kxa

t C)

[
A
Gc

t

]
P xa
t−1|t−1 +Kxa

t C

[
φt

Gt

]

P xa
t|t =

[
P

xa|h
t|t Kxa

t C

[
0
INa

]
0Nxa×Nw

]
[
xt|t
at|t

]
= P xa

t|t

 ht

ηt
wt+1

 = P xa
t|t ht+1
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And then to construct φt+1 in the same fashion as in Lemma 9,

φt+1 =

[
A

[
φt 0
Gt INa

]
B

]
xt+1 = φt+1ht+1

Theorem 18. The value functions for the FHSP and CESP are equal, V (Σx
0) =

W (Σx
0), and an optimal CES {Ge

t , G
c
t ,Σ

η
t }

∞
t=0 ∈ CE has a corresponding optimal FHS

{Gt,Σ
η
t }

∞
t=0 ∈ FH.

Proof. Corollary 14 says there exists an optimal FHS with the Span Property. Propo-

sition 16 shows that the losses from such a FHS can be matched with a CES. Therefore,

the optimal FHS cannot outperform the optimal CES, V (Σx
0) ≥ W (Σx

0). Proposi-

tion 17 says that any CES can be translated into the equivalent FHS. Therefore, the

optimal CES cannot outperform an optimal FHS, V (Σx
0) ≤ W (Σx

0), and together

V (Σx
0) = W (Σx

0). Additionally, if CES {Ge
t , G

c
t ,Σ

η
t }

∞
t=0 ∈ CE is optimal, then its

corresponding FHS is also optimal.

Theorem 19. The value function of the CESP and the value function of the VBP

are equal when U is initialized with Σy
0,

W (Σx
0) = U (Σy

0)

Σy
0 =

Σx
0 0 0
0 0 0
0 0 0


The optimal VBP functions yield an optimal CES,

{Ge
t (Σ

y
t ) , G

c
t (Σ

y
t ) ,Σ

η
t (Σ

y
t )}

∞
t=0
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for

Σy
0 =

Σx
0 0 0
0 0 0
0 0 0


Σy

t+1 = Σy
n (Σ

y
t )

Proof. Lemma 15 shows that we can calculate W (Σx
0) by initializing Σy

0 and plugging

in the optimal choices for the CESP as we go to calculate every Lt and then perform

the discounted sum. Every one of those choices is a valid option for the VBP, and

the discounted sum is the same as the one performed inside the VBP. Therefore,

W (Σx
0) ≥ U (Σy

0).

Note that by construction, the Forward-Looking Constraint inside the definition

of CE is

0 = D

[
xt

at

]
+ J

[
A
Gc

t

] [
xt|t
at|t

]
Also, by constructing at+1 in the CES fashion,

E




xt

at
xt+1

at+1

 |It

 = E




xt

at
xt+1

at+1

 |zt, xt−1|t−1, at−1|t−1


as
(
zt, xt−1|t−1, at−1|t−1

)
contain as much information about the estimated variables

as {zτ |τ ≤ t}.

Let Ge (Σy), Gc (Σy), Ση (Σy) be the optimal choice functions for the VBP. We

can generate a CES from CE by calculating for all t ≥ 0

Ge
t = Ge (Σy

t )

Gc
t = Gc (Σy

t )

Ση
t = Ση (Σy

t )

Σy
t+1 = Σy

n (Σ
y
t )

Thus, W (Σx
0) ≤ U (Σy

0). Together, W (Σx
0) = U (Σy

0).
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The equivalence of CESP and VBP is because each period they have the same

choice sets and constraints. When the policy is constructed in the yt, Gc, Ge fashion,

Σy forms a sufficient statistic for calculating losses and tracking the private sector’s

information. The difference between the two formulations is how the optimization

takes place. The CESP optimizes all the choices concurrently to minimize the expec-

tation of a discounted sum of losses. The VBP uses a value function to minimize the

choices each period, and then, in effect, perform a discounted sum of expectations.

But both problems are solved by the policymaker before any shocks have realized.

2.5 New Keynesian Example

As an application I repeat the analysis Mertens (2016), but solving for commitment

behavior instead of discretionary behavior.

This is a textbook New Keynesian monetary model with two small modifications.

The log–linearized Phillips curve is

πt = βπt+1|t + κgt

where πt is inflation, β ∈ [0, 1) is the common discount factor, κ is a reduced-form

slope that depends on the microfoundations, and gt is the output gap.11 As above,

πt+1|t = E {πt+1|Ipst }, where Ipst is the private sector’s information set. I follow his

numerical exercise, in setting equal weights for the central bank on the inflation and

the output gap target deviation

Lt = πt + (gt − gt)
2

The unconditional expected losses at time 0 are

L = E

[
∞∑
t=0

βtLt

]
11 I use unconventional variable g for the output gap, because x and y are used in the general model.
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The output gap target, gt is time varying. I follow Mertens (2016) and Cukierman

and Meltzer (1986), interpreting the time variation in this target as changing central-

bank preferences. In the financial press, there is discussion of different Federal Reserve

leaders as either hawkish or dovish, and I interpret this as suggesting that there is

uncertainty about the Federal Reserve’s target for the output gap. Tang (2015)

provides an alternative interpretation, as “exogenous variation in the wedge between

the efficient and flexible-price levels of output.”

Again following Mertens (2016), the output target has an autoregressive compo-

nent and an uncorrelated component

gt = γt + εt

γt = ργt−1 + νt[
νt
εt

]
∼ N

(
0,

[
σ2
ν 0
0 σ2

ε

])

for constant ρ ∈ (0, 1), and variances σ2
ε , σ2

ν .

Following Mertens, we consider three informational setups, Full Information, where

the private sector observes γt and εt; Lagged Information, where the private sector

observes γt−1 and πt, (which is enough to infer εt−1); and finally Dynamic Informa-

tion, where the private sector observes only πt.12 In the graphs I also include the

Discretionary version of Dynamic information for comparison.

Like in the two period model, we can ensure that the Forward-Looking Constraint

is met by using using the matrix choices to determine πt and πt+1|t, and then using

12 In the two-period model of Section 2.2, Lagged Information and Dynamic Information would be
identical.
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those to determine gt,

πt = πt|t−1 +Ge
t

([
γt
εt

]
−
[
γt|t−1

0

])

πt+1|t = Gc
t

γt|tεt|t
πt


gt = πt − πt+1|t

with πt instead of πt|t in the second equation because πt is always in the private-sector

information set.

The setup is slightly different for Lagged Information, as there are three elements

in xt now, γt+1

εt+1

γt

 =

ρ 0 0
0 0 0
1 0 0

 γt
εt
γt−1

+

σν 0
0 σε

0 0

wt+1

and

πt = πt|t−1 +Ge,LI
t

 γt
εt
γt−1

−

 γt|t−1

0
γt−1|t−1



πt+1|t = Gc,LI
t


γt|t
εt|t
γt−1

πt


gt = πt − πt+1|t

with γt−1 and πt instead of γt−1|t and πt|t because {γt−1, πt} ∈ Ips,LIt .

We solve for the steady state by using the VBR formulation

U (Σy) = min
Ge,Gc

E {Lc}+ βU (Σy
n)

where for optimal choices Ge and Gc yield Σy
n = Σy.
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2.5.1 Finding the Steady State

I ensure that all possible (Ge (Σy) , Gc (Σy)) are in FH by using them to define πt,

and then using πt to determine the gt that meets the Forward-Looking Constraint,

πc = πc|p +Ge (Σy)

([
γc
εc

]
−
[
γc|p
0

])

πn|c = Gc (Σy)

γc|cεc|c
πc


gc = πc − πn|c

The Steady State Equilibrium is given by

U (Σy∗) = min
Ge,Gc

E {Lc}+ βU (Σy
n)

Σy
n (G

e∗, Gc∗) = Σy∗

that is a distribution Σy∗ such that the optimal choices for Ge and Gc yield the

same distribution for the next period. The key to finding the optimal Ge, Gc is

calculating the ∂U/∂Σy. By the envelope condition we can calculate that for a given

Ge, Gc. The algorithm I use considers the half-vectorization that collects the lower

triangular elements of Σy or Σy
n into a vector, denoted by function vech. It has

Ny ≡ Ny (Ny + 1) /2 elements. From that vector, it is easy to reshape it back into

a lower triangular matrix, and then use the transpose to create the full symmetric

matrix.

Rephrasing in terms of vech,

y ≡ vech (Σy)

yn ≡ vech (Σy
n)

U (y) = min
Ge,Gc

E {Lc}+ βU (yn)
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The partial for a specific element of yi

∂U

∂yi

=
∂E {Lc} (Σy, Ge, Gc)

∂yi

+ β

(
∂yn (Σy, Ge, Gc)

∂yi

)T
∂U

∂y

where ∂yn

∂yi
is the Ny × 1 vector of partials for the half-vectorization of the next

period’s distribution. In words, using the envelope condition, we know that the

partial derivative of U with respect to a specific element of y (and therefore Σy) is

equal to the sum of its direct effect on losses, and its direct effect on the distribution

of the next period’s distribution multiplied by the effects that has on the next period’s

expected losses. Collecting all the partials,

∂U

∂y
=

∂E {Lc} (Σy, Ge, Gc)

∂y
+ βJT ∂U

∂y

where

Jij =
∂yn

i (Σ
y, Ge, Gc)

∂yj

represents the Jacobian of yn with respect to y. And we can rearrange

∂U

∂y
=
(
I − βJT

)−1 ∂E {Lc} (Σy, Ge, Gc)

∂y

Now we can state the first order condition for Ge and Gc,

0 =
∂E {Lc}
∂Ge

+ β

(
∂yn

∂Ge

)T
∂U

∂y

0 =
∂E {Lc}
∂Gc

+ β

(
∂yn

∂Gc

)T
∂U

∂y

So the procedure is as follows. Choose an initial Ge(0) and Gc(0).

The first step is to find the Σy implied by
(
Ge(i), Gc(i)

)
. We can do this by iterating
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equation (A.4) from Appendix A.1, starting with Σy
0 =

[
Σx

0 0
0 0

]

Σy
n =

 AGxa
c B

AP xa
c|c 0

Gc(i)P xa
c|c 0



Σy 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 AGxa

c B
AP xa

c|c 0

Gc(i)P xa
c|c 0

T

where Gxa
c is defined in (A.1), and is a function of Ge(i), and P xa

c|c is defined in equation

(A.3), and depends on Σy and Ge(i).

Once we have found the steady state distribution, Σy(i), extract it’s corresponding

y(i) ≡ vech
(
Σy(i)

)
we can use we use it to calculate the partial, ∂U

∂y
, and from that

we can calculate the FOC for Ge and Gc. Then, the question is how to generate the

next
(
Ge(i+1), Gc(i+1)

)
. What I have found works to approximate U in the recursive

call as

Ũ (i) (ỹ) =

(
∂U

∂y

(
y(i)
))T (

ỹ − y(i)
)
+
(
ỹ − y(i)

)T
H̃

(i)
U

(
ỹ − y(i)

)
where H̃U is an approximation of the Hessian of U that holds Ge and Gc fixed at their

previous values,

H̃
(i)
U =

∂

∂yT

(
∂U
(
y(i), Ge(i), Gc(i)

)
∂y

)

Because this is a second derivative, the envelope condition no longer applies, so this

is not the true Hessian of U . At the steady state equilibrium, ỹ will approach y(i), so

the inaccurate H̃U will not mater compared to the accurate partial,
(

∂U
∂y

)T
.

Using H̃U , we calculate the next iteration of Ge and Gc by

Ge(i+1), Gc(i+1) ≡ arg min
Ge,Gc

(
E {Lc}+ βŨ (yn (y, Ge, Gc))

)
To find the optimal values for Discretion, I implement Mertens (2016, Online
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Table 2.1: Optimal Policies Ge and Gc across Information Structures

FI LI DI Discretion
Ge

γ 0.58 0.31 0.29 0.21
Ge

ε 0.38 0.54 0.67 0.44
Ge

γ−1
0.25

Gc
γ -0.06 -0.15 -0.06 0.24

Gc
ε -0.38 -0.33 -0.38

Gc
γ−1

0.08
Gc

π 0.38 0.38 0.38

Appendix) method. It yields an optimal

πdisc
t = Gdisc

 γt
εt

γt|t−1



= πdisc
t|t−1 +Gdisc

1 0
0 1
0 0

([γt
εt

]
−
[
γt|t−1

0

])

πdisc
t|t−1 = Gdisc

10
1

 ργt−1|t−1

So, we can treat them as choosing the same constants, but optimizing Gc
γ from the

perspective of the next period’s policymaker,

Ge,Disc = Gdisc

1 0
0 1
0 0



Gc,Disc
γ = ρGdisc

10
1


2.5.2 Results

In order to ease interpretability of tradeoffs between inflation and the output gap, I

use κ = 1 for the numerical exercise. The other parameters are the same as used in

Mertens, β = 0.99, ρ = 0.9, and unit shocks to γt and εt each period.
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Figure 2.1: Impulse Response across Information Structures

The left column of Figure 2.1 shows the impulse responses to a unit shock to the

persistent shock, γ0, and the right shows to unit transitory shock, ε0. The rows are

the realized output gap, gt, realized inflation, πt, and the private sector’s next period

expected inflation, πt+1|t.

Under Full Information, the πt+1|t graph is the π graph shifted to the left by one.

It is easy to see how this represents the commitment made by the central bank to the

private sector.

What is more subtle is how for the other two information sets, πt+1|t differs

from πt+1, but it is still a commitment followed through upon by the policymaker.

The forward-looking commitment is with regard to the private sector’s information,

πt+1|t = Gc

[
xt|t
πt

]
. Because the private sector in the shock period has informational

errors for both Lagged Information and Dynamic Information, the private sector’s

forecast will not equal the central bank’s, πt+1|t ̸= E
{
πt+1|Icbt

}
, where Icbt is the

information set of the central bank.

For Lagged Information, the difference only exists in the first period. In the
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bottom left panel, the Lagged public sector expects πLI,γ
1|0 = −0.06, but the true

value is actually πLI,γ
1 = 0.33. For the ε shock, the private sector overestimates

inflation with πLI,ε
1|0 = −0.11 and πLI,ε

1 = −0.33. The central bank is still following

through on its commitment, despite the inaccurate private-sector prediction because

the difference comes from the private sector’s prediction error with regard to γ1

π1 = π1|0 +Ge,LI

γ1ε1
γ0

−

γ1|00
γ0|0


Because the private sector has an inaccurate γ0|0, π1|0 differs from E

{
π1|Icb0

}
. These

values are shown in Figure 2.2. We can see that in period 1, for the Lagged Infor-

mation private sector, the inflation prediction error is even higher than in the first

period. It is higher the inflation prediction error in the first period, despite γ1 − γ1|0

being lower because inaccurate γ0|0 affects the errors for both γ1 and the lag element

of x1, γ0. Thus in period 1 after γ0 = 1 shock, the total weight on inaccurate γ0|0

is Ge
γρ
(
1− γ0|0

)
+ Ge

γ−1

(
1− γ0|0

)
. After period 1, the Lagged Information private

sector has accurate information and πLI
t+1|t = πLI

t+1 for t ≥ 1.

Now we consider the impulse responses for Dynamic Information. The effects

of a shock are much more persistent than the other two informational setups. For

both shocks, output and inflation much more gradually return to trend. After the

persistent shock Figure 2.2 shows how the private sector takes a very long time to

update its beliefs. This is primarily driven by the fact that the central bank responds

more aggressively to εt than
(
γt − γt|t−1

)
, 0.67 and 0.29 respectively (also visible as

the difference in heights for π0 on the graphs). In the two-period model, these numbers

were 0.56 and 0.311.

The slow updating means after a γ shock, the Dynamic Information private sector

is persistently underestimating inflation. Every period γt > γt|t−1, so πt > πt|t−1. And

each period, the update from the surprise is almost equally attributed to γt|t − γt|t−1
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Figure 2.2: Private Sector Predictions and Errors

and εt|t, as seen most clearly in that γ0|0 and ε0|0 are almost equal for either shock,

when γ0|−1 = 0. The approximate values are[
γt|t
εt|t

]
=

[
γt|t−1

0

]
+

[
1.037
1.036

] (
πt − πt|t−1

)
=

[
γt|t−1

0

]
+

[
0.305 0.696
0.304 0.695

] [
γt − γt|t−1

εt

]

The reason that the updating weights are close, despite the fact that the Ge,PI weights

differ is that the variance of the two quantities differ significantly

Var
(
γt − γt|t−1

)
= 2.29

Var (εt) = 1
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and Kalman updating is a combination of uncertainty and observational weights

KDI = Σ
x|ps
t|t−1

(
Ge,DI

)T (
Ge,DIΣ

x|ps
t|t−1

(
Ge,DI

)T)−1

=

[
1.037
1.036

]
Discretion has very similar information updating as Dynamic Information. This

comes from the fact that the information in πt determined by the ratio of Ge
γ to Ge

ε

and is relatively close in both models

Ge,DI
γ

Ge,DI
ε

= 0.45

Ge,Disc
γ

Ge,Disc
ε

= 0.49

with the corresponding update weights being[
γt|t
εt|t

]
=

[
γt|t−1

0

]
+

[
1.59
1.51

] (
πt − πt|t−1

)
=

[
γt|t−1

0

]
+

[
0.341 0.694
0.324 0.659

] [
γt − γt|t−1

εt

]
The similarity of private-sector information is reflected in the first three rows of Figure

2.2.

However, the consequences for for outcomes are quite difference. The difference

is driven primarily by expected inflation, shown in the third row of Figure 2.1. To

some extent, after the γ shock at period 0, γ1|0 is somewhat accurate. With regard

γ1|0, the DI policymaker with commitment can bind itself to

πDI,γ
1|0 = Gc,DI

0.3050.304
0.297

 = −0.02

The Discretionary central bank must take the next period’s Gc,Disc as given

πDisc,γ
1|0 = Gc,Disc

γ

[
0.341

]
= 0.08
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Expected inflation rises in later periods, because it is proportional to γt|t, which has a

hump shape. The consistently higher expected inflation pushes down g and raises π.

As the private-sector estimate of γ approaches the truth, the central bank approaches

the classic discretionary inflation bias outcome of significant inflation and minimal

output gap.

For all three setups with partial information, LI, DI, and Discretion, the policy-

maker chooses to weight the persistent shock less, lowering the accuracy of the private

sector’s information set. This effect is most measurable for the Discretionary central

bank. In the Mertens (2016) algorithm, there is a first order condition that yields

the optimal discretionary response to both γt|t−1 and εt|t−1, even thought the latter

always zero. The discretionary policy can be rewritten as

πDisc
t =

[
0.21 0.44 0.26 0.39

] 
γt − γt|t−1

εt − εt|t−1

γt|t−1

εt|t−1


and we can see that less weight is placed on

(
γt − γt|t−1

)
than γt|t−1, and more weight

is placed on
(
εt − εt|t−1

)
than εt|t−1. The discretionary central banker cannot affect

its future actions, but it still cares about future utility, and those differences are

because the weights on the predictable components of γ and ε don’t affect the in-

formation of the private sector next period, but the weights on the prediction errors

do. With regards to the to the prediction errors, less weight on γ and more weight

on ε lowers expected inflation today, as well as improving the informational position

of the next period’s policymaker. Because the central bank with commitment bases

its predictable inflation policy of πt|t−1 on both γt−1|t−1 and πt−1, it is not as easy to

compare prediction errors for surprise in γt with those predictable behaviors. Never-

theless, we see that for both LI and DI, more weight is placed on the transient shock,

which worsens the private sector predictions.
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2.6 Conclusion

In this paper, I have presented three novel formulations, capable of solving optimal

linear policy for a policymaker with commitment and an informational advantage

over the private sector. To find optimal policy, all formulations must be based on the

unconditional perspective, meaning the policymaker commits to their linear weight-

ings before any shocks are realized. The recursive formulation enables the finding of

a steady state, in which the policymaker takes significant advantage of both commit-

ment and shaping of the private sector’s expectations.
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3

Intermediate Commitment, Temptation, and
Central Banks

3.1 Introduction

It is well known that central banks face a time-inconsistency problem. The optimal

choices from this period’s perspective mitigate today’s constraint via the expectations

channel. From next period’s perspective, however, the central bank would have lower

costs by ignoring this period’s constraint and shocks. In standard optimal monetary

policy, central banks are divided into discretionary banks and those with commitment.

Discretionary central banks reoptimize every period, which means that next period’s

central bank will adjust its decision to lower costs today. Those with commitment

make a state-contingent plan and bind themselves in future periods to follow through

upon the plan, so next period actions are adjusted to reduce costs for this period.

The standard central bank with commitment ignores the past in the very first

period, but ever after follows through on a state-contingent plan in which actions are

responsive to the prior period’s constraint. There is some tension in one type of policy

the very first period, and then quite a different one in later periods. To address this

tension, Woodford (1999) and later work advocates for central bankers to follow a
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“timeless perspective.” Such a central bank has commitment about future periods and

chooses in the first period to follow through on what it would have committed itself

to. In practice, this means every period’s decision incorporating the prior period’s

constraint.

This paper models a central bank that, every period wishes to follow Woodford’s

advice, but does not manage to fully implement it. Marcet and Marimon (2019) and

Giannoni and Woodford (2017) show that timeless policy is equivalent to incorpo-

rating the prior period’s Lagrange multiplier into this period’s utility function. The

central bank with Scaled Commitment applies a discount factor between zero and one

to prior period’s Lagrange multiplier. It puts the degree of commitment on a spec-

trum, where a discount factor of zero, i.e. ignoring the prior constraint, is discretion

and a factor of one, i.e. fully incorporating it, is commitment.

I extend a version of Recursive Contracts to accommodate intermediate forms of

commitment for models with one-period forward-looking constraints. I apply this

to textbook a New Keynesian monetary model and derive how a central bank with

Scaled Commitment compares with discretion and commitment. In particular, it has

correlation across periods, unlike discretion, and still some persistent effects of one-

time shocks, unlike commitment. Both behaviors are intermediate between discretion

and commitment. The key benefit of modeling a Scaled Commitment central bank is a

consistent description that could yield such behavior, and the possibility of estimating

the parameter in future work. Scaled Commitment also allows for different discounts

to different prior-period constraints. I explore the implications if the policymaker

follows through on commitment regarding the always-binding Phillips curve, but does

not have commitment regarding the occasionally binding ZLB.

The most similar work is that of Loose Commitment used first in Debortoli and

Nunes (2010). In it, there is a stochastic chance every period that the central bank re-

optimizes, and breaks with past commitments. Both Loose and Scaled Commitment
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have similar effects of reducing the effectiveness of the expectations channel to miti-

gate current period shocks. They have different effects when the next period arrives.

Scaled Commitment places a limit on the intertemporal sacrifice that next period’s

policymaker is willing to make to accommodate this period’s shocks. Loose Commit-

ment is uncertainty about whether the promises made today will be followed through

upon. Higher probability of reoptimization can lead to more extreme promises, which

does not have a comparable behavior in Scaled Commitment.

Beyond the applications, I present a general extension of Recursive Contracts that

can nest more complicated discounting functions of prior Lagrange multipliers. I also

show how Scaled Commitment is a simple modification to existing solution methods

for Linear Quadratic Regulator models for solving commitment.

The paper proceeds as follows. Section 3.2 develops the two-period model and ap-

plies Gul and Pesendorfer (2001) temptation. Section 3.3 derives the recursive result

before providing some results of scaled commitment. Section 3.4 solves intermediate

commitment models in a more general context, as well as solving scaled commitment

in a more general linear setup.

3.2 Time inconsistency in a two-period model

In this section, I consider a simple two-period New Keynesian monetary model. I

discuss time-inconsistency and formally introduce Scaled Commitment. I then derive

the Gul and Pesendorfer (2001) implied temptation function implied by the interme-

diate behavior. Finally, I show how the general approach can also be used to express

Loose Commitment.

In a New Keynesian model, the central bank chooses its interest rates over time,
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it. The equilibrium conditions for the private sector agents ensure two things1

yt = −it + Et [yt+1 + πt+1]

πt = yt + εt + βEt [πt+1]

εt ∼ N
(
0, σ2

)
where yt is the output gap, πt is the inflation, and εt is the cost-push shock. The

first constraint is the dynamic IS equation, and the second one is the New Keynesian

Phillips curve. These are both forward-looking constraints. First, we assume that

there is no zero lower bound limiting it. Next, following the Ramsey approach, we

let the central bank choose yt and πt subject to the Phillips curve.

Now we simplify the problem even further by assuming only two periods (and

dropping the β). The constraints on the choice of πs and ys are

π1 = y1 + ε1 + E1 [π2] (3.1)

π2 = y2 + ε2

where ε1 and ε2 are the independent and identically distributed mean-0 shocks, with

standard deviation σ. They are known each period before the corresponding π and y

are chosen. The expectations operator comes from the optimality condition for the

private sector agents, thus it is their expectations that matter.

Each period, the second order approximation of the social welfare is,2

Ut = −1

2

(
π2
t + y2t

)
Consider the central bank in period 1 with this utility and constraint. From the

bank’s perspective, the ideal would be if they could manipulate the private-sector

1 I have dropped all constants except β for simplicity.
2 For simplicity again, I drop the constant for the relative weight on the output gap.

77



beliefs away from rational expectations,

π1 = y1 = 0

E1 [π2] = −ε1

π2 = −y2 =
ε2
2

They would not incur any costs in the first period, and the second period losses would

be at the discretionary minimum. However, rational expectations explicitly disallow

this. If the central bank in period 2 is going to ignore ε1, then E1 [π2] = 0.

The central bank will adjust both π1 and y1 to meet (3.1).3 To produce the highest

overall utility, they would also share the adjustment burden with the second period by

(honestly) changing E1 [π2]. However, when period 2 comes, the central bank would

prefer to ignore ε1 in their decision making.

The standard analysis divides the central banks into discretionary ones who ignore

ε1 once period 2 arrives, and those with commitment who follow through on the

optimal incorporation from the period 1. We will first work through the model for

both these central bank types and then explore intermediate behavior.

The Lagrangian for a discretionary bank in the second period is,

L = −1

2

(
π2
2 + y22

)
+ γ2 (π2 − y2 − ε2)

Then

π2 = γ2 =
ε2
2

y2 = −γ2 = −ε2
2

Second period unconditional expected utility is

E

[
−1

2

(
π2
2 + y22

)]
= −1

4
σ2

3 Because they are equally weighted in the utility and in the constraint, they will split the adjust-
ment across them.

78



Because ε2 is mean 0, E1 [π2] = 0. The solution is the same for the first period,

and we have

π1 = γ1 =
ε1
2

y1 = −γ1 = −ε1
2

Banks with commitment function as if they are choosing the state-contingent

policies for π2 and y2 at time 1. Their problem is

max
π1,y1,π2,y2

−1

2

(
π2
1 + y21 + π2

2 + y22
)

s.t. π1 = y1 + ε1 + E1 [π2]

π2 = y2 + ε2

Their Lagrangian is

L = E1

[
−1

2

(
π2
1 + y21 + π2

2 + y22
)
+ γ1 (π1 − y1 − ε1 − π2) + γ2 (π2 − y2 − ε2)

]
Their solution is

πc
1 = γ1 =

2

5
ε1

yc1 =− γ1 = − 2

5
ε1

πc
2 = γ2 − γ1= − 1

5
ε1 +

1

2
ε2

yc2 =− γ2 = − 1

5
ε1 −

1

2
ε2

Following through on the commitment lowers second period utility to

E

[
−1

2

(
πc2
2 + yc22

)]
= −.29σ2

= 1.16 ∗
(
−1

4
σ2

)
.
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Thus the second-period central bank using commitment is 16% worse off. But, the

benefit to the first-period central bank is

E

[
−1

2

(
πc2
1 + yc21

)]
= − 4

25
σ2

= .64 ∗
(
−1

4
σ2

)
.

The first period central bank is 36% better off. This shows the utility benefits to the

first period and costs in the second period.

This is a radically simplified model, but we have used it to highlight the intertem-

poral tradeoff a commitment central bank achieves: a small cost to second-period

utility has a larger benefit to first-period utility. Commitment allows the central

bank to make beneficial intertemporal sacrifice.

3.2.1 Intermediate Bank Behavior

In this subsection, I propose a method of indexing banks based on them applying a

discount in the second period to the first period Lagrange multiplier. This will nest

discretion and commitment: a discretionary central bank in the second period ignores

the first period constraint, and a central bank with commitment in the second period

chooses policies that incorporates its effect on the first period constraint.

Marcet and Marimon (2019) and others show that if the policymaker properly

incorporates the first-period Lagrange multiplier into his second-period utility, then

optimal second-period policy will follow through on the first-period commitment.

This is an application of Woodford’s encouragement to follow timeless policy in the

second period: choosing to do what the policymaker would have wished you to do

based on a prior perspective.

Framed as a Recursive Contract saddlepoint problem, the period problems for a

bank with commitment are
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U1 (ε1) = min
γ1

max
π1,y1

−1

2

(
π2
1 + y21

)
+ γ1 (π1 − y1 − ε1) + E {U2 (γ1, ε2)}

U2 (γ1, ε2) = min
γ2

max
π2,y2

−1

2

(
π2
2 + y22

)
− γ1π2 + γ2 (π2 − y2 − ε2)

The Lagrange multiplier γ1 enforces the constraint, because the second period

utility fully internalizes its effects on the first period constraint. The first order

condition for the first problem is

0 = π1 − y1 − ε1 + E

{
∂U2

∂γ1

}

and by the envelope condition,

∂U2

∂γ1
= −π∗

2

E

{
∂U2

∂γ1

}
= −π2|1

0 = π1 − y1 − ε1 − π2|1

As discussed above

γ∗
1 =

2

5
ε1

γ∗
2 =

1

2
(ε2 + γ1)

π∗
2 = γ∗

2 − γ∗
1

=
1

2
ε2 −

1

2
γ∗
1

π∗
2|1 = −1

2
γ∗
1
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We can also calculate explicitly

E {U2} = −1

2
σ2
ε2
+

1

4
γ2
1

∂E {U2}
∂γ1

=
1

2
γ1

= −π∗
2|1

Definition 20. A two-period central bank with scaled commitment τ optimizes the

following value functions,

U τ
1 (ε1) = min

γ1
max
π1,y1

− 1

2

(
π2
1 + y21

)
+ γ1 (π2 − y2 − ε2)

+ U τ,adj
1

(
γ1, π

∗
2|1 (ε1)

)
+ E {U τ

2 (γ1, ε2)}

U τ,adj
1

(
γ1, π

∗
2|1 (ε1)

)
= − (1− τ) γ1π

∗
2|1 (ε1)

U τ
2 (γ1, ε2) = min

γ2
max
π2,y2

− 1

2

(
π2
2 + y22

)
− τγ1π2 + γ2 (π2 − y2 − ε2)

where εt is a cost-push shock, πt is inflation, yt is the output gap, γt is the Lagrange

multiplier, and π∗
2|1 (ε1) is the reduced form of π2|1 in terms of the fundamental shock

ε1, not including γ1. It must be consistent

π∗
2|1 (ε1) = E {π2|ε1}

Start by considering the second period utility function. Its only difference from the

Recursive Contract one is the discount facto τ applied to the γ1π2. I interpret this as in

the second period, the central banker wanting to implement timeless policy, but only

able to do it up a factor of τ . An alternative interpretation is that there are two groups

within the central bank, one wishing to act in the discretionary manner, and one

wishing to act with commitment. The coefficient τ is a reduced-form representation

of the bargaining power of the commitment group. Because the second period bank’s

utility may incompletely incorporate there is a utility adjustment factor U τ,adj
1 so
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that the total utility for U τ
1 accurately reflects the constraint, i.e. at the optimum

U τ
1 (ε1) = −L1 + E {L2} and the constraints are met.

Proposition 21. Two-period banks with scaled commitment meet the Phillips Curve

both periods, and the U τ
1 is accurate.

Proof. It is easy to see that in the second period a τ central bank will choose

πτ∗
2 = γ2 − τγ1 =

1

2
(ε2 − τγ1)

yτ∗2 = −γ2 =
1

2
(−ε2 − τγ1)

In the second period, a central bank with τ < 1 discounts the benefit to the

first period policymaker of his action, internalize −τγ1π2 instead of −γ1π2. This

is precisely why it under-adjusts π2 in response to the first period constraint. The

first period utility function has the factor U τ,adj
1 (γ1) in order to adjust its utility to

accommodate the discounting by the bank in the second period. The second period’s

expected utility will end up being

E {U τ
2 (γ1, ε2)} = E {L2} − τγ1π

∗
2|1

But we want the Lagrange approach to be

U τ
2 (ε1) = L1 + E {L2}+ γ1 (π1 − y − ε1)− γ1π2|1

not, −τγ1π
∗
2|1. Therefore, we use

U τ,adj
1

(
γ1, π

∗
2|1 (ε1)

)
= − (1− τ) γ1π

∗
2|1 (ε1)

= −γ1π
∗
2|1 (ε1) + τγ1π

∗
2|1 (ε1)

It is crucial that the π∗
2|1 inside U τ,adj

1 be unresponsive to changing γ1 so that the
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saddle-point setup enforces the constraint,

∂U τ,adj
1

∂γ1
= − (1− τ) π∗

2|1 (ε1)

∂
(
U τ,adj
1 + E {U τ

2 }
)

∂γ1
= − (1− τ) π∗

2|1 (ε1)− τπ∗
2|1

= −π∗
2|1 (ε1)

where the second equation takes advantage of the envelope condition inside U2. Then

the entire first order condition for γ1 will be

0 = π1 − y1 − ε1 − π∗
2|1 (ε1)

Then we can solve for equilibrium behavior,

−y1 = π1 = γ1

0 = γ1

(
2 +

τ

2

)
− ε1

yielding

π∗
1 =

2

4 + τ
ε1

y∗1 = − 2

4 + τ
ε1

π∗
2|1 (ε1) = − τ

4 + τ
ε1

π∗
2 = − τ

4 + τ
ε1 +

1

2
ε2

y∗2 = − τ

4 + τ
ε1 −

1

2
ε2

We can see how Scaled Commitment nests discretion and commitment, by com-

paring τ = 0 and τ = 1 outcomes to those derived above.
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3.2.2 Applying Gul and Pesendorfer (2001) to Scaled Commitment

In their paper, Gul and Pesendorfer (2004) (hereafter GP) derive a representation

result for the utility of choice sets of actions. They show that if an actor has a certain

type of preferences over sets, then their utility over choice sets is representable as

two functions, the utility under commitment, and a temptation function. In this

section, I show that Scaled Commitment meets their axioms, and therefore it is

useful to interpret the reduced form Scaled Commitment behavior as responding to

the temptation to break with the past.

The axioms in GP allow them to model situations when the availability an ex-ante

inferior choice can lower overall utility. Let A ≿ B indicate that choice set A is weakly

preferred to choice set B. The novel axiom for GP agents is Set Betweenness. It states

that if A ≿ B, then A ≿ A ∪B ≿ B.4 An agent has a Preference for Commitment if

there exists an A where A ≻ A ∪B, with ≻ indicating strict preference.

The choice sets we will consider are for period 2 inflation, and will be labeled

Wl,h, will represent the weight the second-period central bank puts on the first period

shock: w ∈ Wl,h ≡ [l, h] will correspond to π2 (w) = −wε1 +
1
2
ε2

Phrased as a choice set problem, we can define the second period utility for type

τ as

U τ
2 (γ1, ε2;w) ≡ −1

2

(
π2
2 + (π2 − ε2)

2)− τγ1π2

s.t. π2 = −wε1 +
1

2
ε2

Then the second period central bank will choose

wτ
l,h ≡ arg max

w∈Wl,h

U τ
2 (γ1, ε2;w)

and we can see that they will always choose the w closest to free choice above τ
2+τ

4 Maximizers without time-inconsistency would be indifferent (∼), A ≿ B =⇒ A ∼ A ∪B ≿ B.
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from πτ
2 = − τ

2+τ
ε1 +

1
2
ε2,

wτ
l,h = arg min

w∈
[
l, h

]
∣∣∣∣w − τ

2 + τ

∣∣∣∣
We can define πτ,l,h

2 as the inflation chosen by type τ from the choice set Wl,h, and

πτ,l,h
2|1 its first period expectation,

πτ,l,h
2 = −wτ

l,hε1 +
1

2
ε2

πτ,l,h
2|1 = −wτ

l,hε1

therefore,

E
{
L2|wτ

l,h, ε1
}
= −1

4
σε2 −

(
wτ

l,h

)2
ε21

Given wτ
l,h, we can also solve for the period 1 choices

γ1 = πτ,l,h
1 = −yτ,l,h1 =

1

2

(
1− wτ

l,h

)
ε1

and utility from the first period perspective

U τ
1

(
ε1;w

τ
l,h

)
= −

(
1

4

(
1− wτ

l,h

)2
+
(
wτ

l,h

)2)
ε21 −

1

4
σ2
ε2

This utility is a quadratic function of wτ
l,h with a minimum at 1/5. Therefore, it

exhibits Set Betweenness, with ≿τ representing the preferences of a central bank with

Scaled Commitment τ ,

Wl,h ≿τ Wl′,h′ =⇒
∣∣∣∣wτ

l,h −
1

5

∣∣∣∣ ≤ ∣∣∣∣wτ
min(l,l′),max(h,h′) −

1

5

∣∣∣∣ ≤ ∣∣∣∣wτ
l′,h′ −

1

5

∣∣∣∣
⇐⇒ Wl,h ≿τ (Wl,h ∪Wl′,h′) ≿τ Wl′,h′

The model described meets the other axioms of the GP result: they are com-

plete, they satisfy continuity, and they satisfy the independence axiom. Thus, their

representation result holds

V τ
1 (Wl,h; ε1) = max

w∈Wl,h

u (w; ε1, τ) + v (w; ε1, τ)− max
w̃∈Wl,h

v (w̃; ε1, τ) (3.2)
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Proposition 22. The following definitions of u and v represent a two-period central

bank with intermediate commitment τ ∈ (0, 1] over choice sets Wl,h in equation (3.2),

for shock ε1

u (w; ε1, τ) = −
(
1

4
(1− w)2 + w2

)
ε21

v (w; ε1, τ) = −
(
1

τ
− 1

)
w2ε21

Proof. Inside V τ
1 (Wl,h; ε1), the proof amounts to checking that the function u repre-

sents the utility of singleton menus; and w∗ represents the value actually chosen.

Singleton menus Ww,w = {w} force the choice,

πτ,w,w
2 = −wε1 +

1

2
ε2

and this has the same relative utility of for different w as U τ
1 , therefore it is identified

up to affine transforms, and I omit the constant in U τ
1 .

Now let’s check that w∗ = wτ
l,h from above.

u (w; ε1, τ) + v (w; ε1, τ) = −
(
1

4
(1− w)2 +

1

τ
w2

)
ε21

It has an optimum at τ
4+τ

, so,

wτ
l,h = arg max

w∈Wl,h

u (w; ε1, τ) + v (w; ε1, τ)

as desired.

The fact that GP applies supports the interpretation of time-inconsistency as a

temptation. Always, the central bank at time 2 would prefer to ignore the past

constraint. In the GP notation above, the most tempting element for v is always

w = 0. From the perspective of of period 1, the central bank has a preference for
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commitment. I claim that the central bank in time 2 knows they should incorpo-

rate the prior constraint, and follow Woodford’s advice to act in a timeless manner.

Scaled Commitment allows us to put their ability to follow the timeless perspective

on a spectrum. Rational expectations means that ability feeds back into first period

expectations and we solve the model accordingly.

To summarize, we defined central banks with scaled commitment τ as those in

the second-period decision making discount the first-period Lagrange multiplier by

τ . We derived first and second period utility extensions of Recursive Contracts that

were consistent with the second-period decision making. Finally, we showed that this

behavior and preferences had Set Betweenness from Gul and Pesendorfer (2001). We

derived u and v functions for their representation result.

3.2.3 Rephrasing Loose Commitment

The approach of a U2 that doesn’t fully match Recursive Contracts paired with a Uadj
1

to accommodate the deficit can be used to represent Loose Commitment as well. In

the previous subsection, we modeled second period policymaker as discounting the

prior Lagrange multiplier by τ . That yielded π2 = γ2 − τγ1. With respect to the

index τ , the second period outcome smoothly depended upon first period constraint.

In general if π2 (γ1, γ2) is specified, and E1

[
∂π2

∂γ1

]
≤ 0, then one can solve the model.

The specific values of γ1 and γ2 will of course have to adjust so that the constraints

hold, but the Lagrangian will still work.

Now I apply the same approach to Loose Commitment, (Debortoli and Nunes

(2010); Bodenstein et al. (2012); Debortoli and Nunes (2014); Debortoli and Lak-

dawala (2016)). In this framework, the policymaker has a stochastic chance to reop-

timize in the second period. If he does reoptimize, he ignores the past and π2 does

not depend on γ1: π2 = γR
2 . If he does not reoptimize, then he follows through on

the plan it made in previous period: π2 = γC
2 − γ1. Note that the Lagrange multi-
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plier under reoptimization, γR, will differ from the one under following through on

commitment, γC . To describe this in an extension of Recursive Contracts, we can

just add an independent, exogenous Bernoulli random variable with probability p, C.

When C = 1, that indicates the policymaker follows through on the commitment,

π2 = γ2 − Cγ1.5

Definition 23. A two-period central bank with loose commitment probability p op-

timizes the following value functions,

U lc,p
1 (ε1) = min

γ1
max
π1,y1

− 1

2

(
π2
1 + y21

)
+ γ1 (π2 − y2 − ε2)

+ U lc,p,adj
1 + E

{
U lc,p
2 (γ1, ε2, C)

}
U lc,p,adj
1 = (1− p)E {π∗

2 (ε1, ε2, C) |C = 0}

U lc,p
2 (γ1, ε2, C) = min

γ2
max
π2,y2

− 1

2

(
π2
2 + y22

)
− Cγ1π2 + γ2 (π2 − y2 − ε2)

where εt is a cost-push shock, πt is inflation, yt is the output gap, γt is the Lagrange

multiplier, C is a Bernoulli random variable of probability p representing the chance

the central bank does not reoptimize, and π∗
2 is the equilibrium policy for π∗

2.

Solving the system for the second period policy

π∗
2 =

{
1
2
ε2 C = 0

1
2
(ε2 − γ1) C = 1

therefore, because ε2|1 = 0, U lc,p,adj
1 = 0, no adjustment is needed to the first period

utility.

E
{
U lc,p
2 (γ1, ε2, C)

}
= E {L2} − pE {γ1π2|C = 1}

= E {L2} − γ1π2|1

5 Dropping the superscripts, just note that γ2 depends on γ1, ε2, and R .
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which is precisely what’s needed.

Solving the system yields an equilibrium condition for the first period Lagrange

multiplier:

4γ1 + E [Cγ1] = 2ε1.

That yields the result

π∗
1 = γ1 =

2

4 + p
ε1

y∗1 =− γ1 = − 2

4 + p
ε1

π∗
2 = γ2 − Cγ1= − C

4 + p
ε1 +

1

2
ε2

y∗2 =− γ2 = − C

4 + p
ε1 −

1

2
ε2

The outcomes in the first period are quite similar to Scaled Commitment. Here the

chance of not reoptimizing, p, maps to the discount τ . Both vary from 0 to 1, with

p = 0 nesting discretion, and p = 1 nesting commitment. The difference appears

in period 2. If the reoptimization does occur, C = 0, and ε1 has no effect on the

second period outcomes. If reoptimization does not occur, C = 0, and the second

period variables react more strongly to ε1 than if they had been under commitment

(1/ (4 + p) > 1/5).

The two applications in this section show that extending Recursive Contracts

to accommodate intermediate forms commitment is a promising avenue of analysis.

In the first, I defined a two-period central bank with Scaled Commitment. I showed

how the value functions enforce the constraint, and how they exhibit Set Betweenness

from Gul and Pesendorfer (2004). This fact supports the interpretation of the second-

period central bank producing intermediate behavior in response to the temptation

to break with the past. In the second exercise, I used the same type of Recursive

Contracts extension to model two-period Loose Commitment. This is quite similar
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to the solution method used in Bodenstein et al. (2012), however, I have consolidated

the value functions into one function. I provide the alternative interpretation that an

intermediately committed central bank responds to shock C, not C determines which

central bank shows up next period.

3.3 Recursive Intermediate Commitment

The previous section focuses on the two-period central bank model. This section

extends the reduced-form Lagrange discounting into a recursive framework. We also

reintroduce standard constants (κ and λ) and allow a positive output gap.

πt = κyt + εt + βEt [πt+1]

Ut = −1

2

(
π2
t + λ (y − yt)

2) .
When considering his action this period, the central bank would prefer not to in-

corporate how his expected action this period affected the prior period’s constraint.

But he would prefer that the next period’s central bank take into consideration this

period’s constraint.

As discussed above, the standard analysis divides central banks into discretionary

ones and those with commitment. In every period t, the discretionary actor ignores

the past, and makes his choices. He rightly expects the future version of himself to

do the same. His Lagrangian looks like

LD = U + γ (π − κy − ε− βE [π+1])

For a discretionary central banker facing the New Keynesian Phillips curve, future

utility is not a consideration, because this period’s actions cannot affect it. Inflation

next period, π+1, must be taken as given. The optimal choice here is π∗ = γ.

In the case of the committed actor, we assume there is a date t0 when the central
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bank makes his state-contingent plans. His Lagrangian looks like

LC = Et0

∞∑
t=t0

βt−t0 (Ut + γt (πt − κyt − εt − βπt+1)) (3.3)

This problem produces one policy for t0, and a different one for all t > t0: π∗
t0
= γt0 ;

and for all t > t0, π∗
t = γt − γt−1. In the first period, the central bank ignores the

past, and the forever after incorporates it.

The discrepancy between the first and subsequent periods led Woodford (1999) to

advocate the central bank follow “a pattern of behavior to which it would have wished

to commit itself to at a date far in the past.” As he expanded in Woodford (2003),

“Rather than doing one thing now but promising to behave differently in the future,

one should follow a time-invariant policy that is of the kind that one would always

wish to have been expected to follow.” Timeless monetary policy argues the central

bank choose π∗
t = γt − γt−1 for the first period as well as all subsequent periods.

Central banks have some control over how they choose their policy, but they

may not be impervious to the temptation to ignore the past. I derive a method to

answer the question, “what if central banks imperfectly follow Woodford’s advice?” I

express this behavior recursively. If the central bank has commitment, Marcet and

Marimon (2019) show how to use Recursive Contracts to solve the problem as a

value function. They transform it into a saddle-point problem by adding the previous

period’s Lagrange multiplier as a state variable to the value function and the decision

making.

V C (ε, γ−1) = min
γ

max
π,y

U + γ (π − κy − ε)− γ−1π + βE [V (ε′, γ)] (3.4)

where superscript C is for commitment, ε is the cost-push shock, γ−1 is the prior

period’s Lagrange multiplier, γ is this period’s Lagrange multiplier, π is this period’s

inflation, y is this period’s output gap, and β ∈ [0, 1). For the central banker in this
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model, the timeless choice is optimal, and the FOC for γ, along with the envelope

condition, ensure that the constraint holds.

Recursive Contracts are often interpreted as a numerical approach to the true

underlying Lagrangian. In that interpretation, the true problem is represented by

(3.3), and (3.4) is this the economic modeler’s method of solving for the policymaker’s

plan. However, I suggest that the recursive framing is actually a better representation

of the problem facing the central banker. There is no common knowledge, state-

contingent policy written down ready to be followed through upon. Woodford was

speaking to the central bankers today, and encouraging them to internalize their

choices’ effects on prior constraints. How much should they internalize them? γ−1π.

In Giannoni and Woodford (2017), they describe how incorporating the prior period’s

Lagrange multiplier into this period’s social welfare consideration is an alternate route

to timeless policy. The fact that Woodford and others encourage policymakers to act

timelessly highlights that there actually are policymakers deciding at every time t. If

they operate in a timeless perspective, they incorporate γ−1π.

My generalization substitutes an arbitrary function T in place of γ−1π. This

function represents the degree to which the central banker incorporates the prior

constraint into his decision process this period,

V (u, γ−1) = min
γ

max
π,y

U−T (u, γ−1, π)+γ (π − κy − u)+V T ,adj (u, γ−1, γ)+βE [V (u′, γ)]

π∗ = γ − Tπ. V T ,adj is a utility adjustment in case E [T (u′, γ, π′)] does not equal

E [γπ′]. The Lagrange method requires two things. First,

V T,adj (u, γ−1, γ) + βE [V (u′, γ)] = −γβE [π′]

so that γ, in expectation, inside V (·), there is a net term γ (π − κy − u− E [π′]), and
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when the constraint is met that term goes to 0. Second, we require that

∂
(
V T,adj (u, γ−1, γ) + βE [V (u′, γ)]

)
∂γ

= −βE [π′]

so that minimization of γ enforces the constraint. To do this, V T ,adj (u, γ−1, γ) will

have to depend on what T is used, and probably used an equilibrium formula for

optimal E [π′]. If T = γ−1π, π∗ = γ − γ−1, V T,adj = 0, we get back Recursive

Contracts.

Suppose the central banker reads Woodford and knows he should act as he would

want from a prior period, but he cannot bring himself to sacrifice that much. In

the language of the previous section, he knows what he should do, but he faces a

temptation to ignore the past. If the temptation is overwhelming, he will act with

discretion and T = 0, but it could be some intermediate level. An intermediate

temptation would be represented by a T between 0 and γ−1π.

Loose Commitment

As discussed in the two-period setup, the closest similar work is Loose Commitment,

primarily developed by Debortoli and Nunes (Debortoli and Nunes (2010); Bodenstein

et al. (2012); Debortoli and Nunes (2014); Debortoli and Lakdawala (2016)). In their

framework, there is a stochastic chance of reoptimization every period. They solve

for a period of reoptimization by plugging in γ−1 = 0.6 In their notation, they have

extra terms representing the forward-looking chance of reoptimization.7 Like in the

two-period setup, we can define

V lc (u,C, γ−1) = min
γ

max
π,y

U − Cγ−1π + γ (π − κy − u)

+ V lc,adj (u,C, γ−1, γ) + βE
[
V lc (u,C, γ−1)

]
6 Page 130 of Bodenstein et al. (2012): The value function for a period when the central

bank reoptimizes is is equal to the full one with prior obligations set to zero, “V R (ut, gt) =
V
(
ut, gt, µ

1
t = 0, µ2

t = 0
)
.”

7 For example, hPC
t ≡ πt−κyt−β (1− η)Etπ

R
t+1−ut, with η being the chance of not reoptimizing.
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with C an independent, exogenous Bernoulli random variable with probability p, and

in equilibrium require that

V lc,adj (u,C, γ−1, γ) = −γ (1− p) βE [π′|C ′ = 0]

∂V lc,adj (u,C, γ−1, γ)

∂γ
= (1− p) βE [π′|C ′ = 0]

which means that the value E [π′|C = 0] must be computed from (u,C, γ−1), not

depending on γ.

3.3.1 Scaled Commitment

Now we will give the specific formulas for Scaled Commitment in which the La-

grangian from the prior period is discounted by τ . The central banker knows he

should internalize the costs on the prior constraint, but he discounts them,

T (u, γ−1, π) = τγ−1π

for τ ∈ [0, 1]. That yields the following results

π∗ = γ − τγ−1

V τ,adj (u, γ−1, γ) = −β (1− τ) γE [π′∗]

where τ represents the type of central banker or the central banker’s decision-making

process. Note, an interior value for τ is not about breaking promises. Instead, τ

controls how much the central banker is capable of spreading sacrifice across time.

The Phillips curve must be met, and the question is how to spread the burden of

meeting it between this period (πt and yt) and next period (πt+1, and by implication

from the t+1 Phillips curve, yt+1). In the timeless perspective, the marginal utility of

adjustments to the constraint is 1:1.8 In Scaled Commitment, the marginal utility of

the ratio of adjustments is 1 : τ . Whatever the previous period’s marginal disutility

8 The central banker’s desire to have 1 : β−1 is offset by the β discount on the effectiveness of
changes in the next period’s decision.
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for adjusting π, this period’s central bank is willing to match that disutility discounted

by τ . The next period’s central banker will do the same with regards to this period’s

adjustment. This approach is akin to other forms of short-term thinking such as β-δ

discounting from Laibson (1997).

The model can be solved analytically, and the difference equation becomes

βE [γ+1]−
(
1 +

κ2

λ
+ βτ

)
γ + τγ−1 = −κy − u.

In the context of this model, Woodford (2003) discusses discretion, t0 optimal, and

timeless policy. As scaled commitment nests these, I reproduce some of the key graphs

from his discussion to illustrate the effect of τ . The results are unsurprising, yielding

more or less a convex set of behaviors between commitment and discretion. Most

promising is that because the decision is linear in the Lagrange multipliers, it can be

translated into a LQR problem, as I describe in subsection 3.4.2.

Figure 3.1 shows the two roots of the difference equation for τ ∈ [0, 1]. Both roots

monotonically increasing, with the smaller one starting at 0, for τ = 0, representing

discretion.

Figure 3.2 shows the inflation bias versus τ . It is almost linear with this calibration

because κ2 ≫ γ (1− β).

E [πt] =
κλ (1− τ)

κ2 + λ (1− τ) (1− β)
y

I include Figure 3.3 for completeness. It shows what a t0-optimal path would be

under various settings of τ . I believe it much better to model central banks as following

the same strategy across time, as opposed to the special t0 effects a Lagrangian

normally yields. Central bankers following a timeless strategy with parameter τ

would produce the horizontal asymptotes that the inflation approaches.

Finally, Figure 3.4 is the impulse response to a ε = 1 shock at time 0. We can

see that the greater the distortion from timelessness, the more significant the change
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Figure 3.1: Difference Equation Roots

Figure 3.2: Annualized Inflation Bias
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Figure 3.3: Perfect Foresight Equilibrium Inflation for Time-Zero Optimal Path

in output. Commitment optimally uses below expected inflation in later periods to

spread the disutility across time.

3.3.2 Scaled Commitment and ZLB

Adam and Billi (2006) use Recursive Contracts to solve for optimal monetary pol-

icy incorporating the zero lower bound. In the previous subsection, we ignored the

dynamic IS equation that specified how interest rates are connected to the output

gap:

yt = −σ (it − Etπt+1) + gt + Et [yt+1] .

The central bank could set it as needed to achieve any πt and yt that was consistent

with the Phillips curve. As evident due to the Great Recession and the economic

turbulence during Covid, it is also important to analyze situations where the central

bank cannot lower it to its desired level. Adam and Billi write it as, it ≥ −r∗. We

can substitute this in, to phrase the constraint on yt:

yt ≤ σr∗ + gt + Et [σπt+1 + yt+1] .
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Figure 3.4: Impulse Response to a Temporary ε = 1 Cost-Push Shock

This constraint is only occasionally binding. When the economy is away from the

lower bound, desired output yt is below what would be attainable with it = −r∗. In

that case, the Lagrange multiplier will be zero, γz = 0. In our notation it would be

V
(
ε, g, γp

−1, γ
z
−1

)
= min

γp∈R,γz∈R+
max
π,y

{
U + γp (π − κy − ε) + γz (−y + σr∗ + g)

− T + V T ,adj + βE [V (ε′, g′, γp, γz)]

}

where γ1 is minimized over all γp is minimized over all of R, because the Phillips

curve always binds, and only γz ≥ 0 is considered because the zero lower bound

(ZLB) is only occasionally binding. They solve it using the timeless value T =

γp
−1π − γz

−1β
−1 (σπ + y).

Scaled commitment is represented by

T
(
π, y, γp

−1, γ
z
−1

)
= τpγ

p
−1π − τzγ

z
−1β

−1 (σπ + y)

V T ,adj
(
ε, g, γp

−1, γ
z
−1, γ

p, γz
)
= −β (1− τp) γ

pE [π′∗] + (1− τz) γ
zE [σπ′∗ + y′∗]
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Figure 3.5: Risk Each Period of Reaching the Zero Lower Bound

which yields a policy of

π∗ = γp − τpγ
p
−1 + τzγ

z
−1σβ

−1

y∗ =
1

λ

(
−γpκ− γz + τzγ

z
−1β

−1
)
.

Figure 3.5 shows the period risk of reaching the ZLB. On the x-axis is τp, the

measure of how much the previous period’s Phillips curve is incorporated. On the

y-axis is τz, the measure of how much the previous period’s ZLB constraint is incor-

porated into this period’s constraint. The bottom left corner represents discretion,

and the top right represents commitment. Figure 3.6 shows the unconditional welfare

of the parameter range. As the figure demonstrates, τp is much more important for

the purposes of unconditional welfare than τz. It is because the Phillips curve always

binds, whereas the ZLB only does so occasionally.

After a −3σg demand shock, Figure 3.7 shows the welfare cost and Figure 3.8

shows the additional periods at the ZLB. Finally, Figure 3.9 shows the generalized

impulse response after the shock. In it, τp represents the bottom right corner of the

heatmaps, with τp = 1 and τz = 0. τz represents the converse with τz = 1 and τp = 0.
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Figure 3.6: Expected Welfare

We can see that when it comes to this shock, commitment and τz are remarkably

similar. However, from the welfare graph, we can see that although τp has a very

different path from commitment and τz, it mitigates most of the welfare cost.

These dynamics seem to me to describe Japan for the past two decades and most of

the industrial world since the Great Recession. They all had low and stable inflation

going into things, significant difficulty dealing with the zero lower bound, and none

of the overshooting after leaving the zero lower bound that would have been optimal.

The central bankers did not promise to overshoot, actors in the market did not expect

an overshoot, and we did not observe one after the fact. Note that models of a

discretionary central bank incapable of overshooting after the zero lower bound must

omit the inflation bias that was prevalent in analysis of the past.

Further work should investigate rationalizing τp. Consider a model where central

banks imperfectly observe the scaled timeless parameters τ . During a period of dis-

inflation, the central bank can increase private sector’s estimation of τp. This would

“anchor” inflation expectations at a level closer to commitment and also explain why

expectations had a systematic error for a time. Full information models struggle to

101



Figure 3.7: Welfare Cost of −3σg Shock

Figure 3.8: Additional Periods at ZLB After −3σg Shock
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Figure 3.9: Impulse Response After −3σg Shock

explain the consistent overestimation of expected inflation during the disinflation of

the 1980s.

If the central bank only updates the private sector’s estimate by acting, there are

different results for the two τ ’s. Over time, the central bank could increase the private

sector’s estimate of τp, because every period the central bank gets the opportunity

to prove its resistance to the inflation bias. However, before the first lower bound

episode, there would be no way to increase the estimate of τz. Further, excess inflation

and output after the zero lower bound would increase the perceived τz, but decrease

the perceived τp. This would present the central bank with a tradeoff, and whether it

was worthwhile would depend on the anticipated duration and frequency of episodes

at the zero lower bound. The tradeoff would help to explain the central bank’s concern

that inflation expectations remain “anchored,” and the frequent insistence that that

inflation would not end up significantly above target, despite massive quantitative

easing.9

9 Beckworth (2017) shows evidence that the Federal Reserve’s Quantitative Easing programs were
always intended to be temporary and were never intended to drive inflation above target at a later
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3.4 General Derivation

In the previous section, I worked with a simple New Keynesian problem facing a

central bank. In this section, I generalize the to any problem with a one-period

forward-looking constraint. This would be useful in several situations, for example,

fiscal policy or a lending decision where there is a participation constraint.

We start with an infinite-time Bellman setup

V (x) = max
a∈Γ(x)

F (x, a) + βE [V (x′) |x, a]

s.t. x′ = T (x, a) ,

where Γ (x) is the choice set, F (x, a) is the instantaneous utility, and T (x, a) is the

transition equation, which can be stochastic. As currently set up, the model cannot

handle forward-looking constraints, such as a = x + E [a′]. Marcet and Marimon

(2019) Recursive Contracts allow formulation of a time-0 or timeless agent with for-

ward looking constraints.

h0 (x, a) + βEt [h1 (x
′, a′)] ≥ 0,

where h0 and h1 have dimension l to handle more than one constraint. Then the

problem can be reformulated as a saddle point

V (x, γ−1) = min
γ∈R1×l

+

max
a

F (x, a) + γh0 (x, a) + γ−1h1 (x, a) + βE [V (x′, γ) |x, a]

Note that the first-order conditions become

∂F

∂a
+ γ

∂h0

∂a
+ γ−1

∂h1

∂a
+ βE

[
∂V

∂x

∂x′

∂a

]
= 0

date.
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and

γj = 0,

or hj
0 + βE

[
∂V

∂γj
−1

]
= 0

hj
0 + βE

[
hj
1

]
= 0.

The last result is the consequence of the envelope theorem. In particular, minγ will

choose γj = 0 if hj
0 + βE

[
hj
1

]
> 0. Recursive Contracts allow us to transform a

problem with forward-looking constraints into a Bellman problem with prior-period

Lagrange multipliers as additional state variables. When facing a constraint, the actor

with commitment can change his behavior this period as well as in the future. He

balances the adjustment to his decision in whatever way maximizes his welfare. The

prior period’s Lagrange multipliers represent a constraint’s shadow cost to welfare,

and by incorporating that cost when making his decision, the agent behaves as he

would have committed to behave in the past.

The prior Lagrange multipliers are often described as representing prior promises.

In the standard optimization, an agent with commitment makes state-contingent

policies and promises to follow through with them indefinitely. When the recursive-

contract agents incorporate the prior-period Lagrange multipliers, the recursive poli-

cies match the state-contingent policies. Hence, incorporating the prior-period mul-

tipliers is described as “respecting prior promises” or even “following through on prior

promises.” Under that interpretation, the state-contingent policies are the true plans

or promises, and Recursive Contracts are just a numerical algorithm for us to calculate

them.

There are two problems with this interpretation. First, when using Recursive

Contracts is the only way for us to solve the problem, it is better to interpret agent

as treating the problem recursively as well. If our best algorithms can only solve
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it recursively, it is inaccurate to claim the agent is following through on a state-

contingent plan he made in the past. Instead, he is also following through on a

recursive algorithm. Second, we should take seriously the idea that a timeless agent

this period is concerned with how his decision process now would have affected himself

in previous periods. It is a backward bargain through time. He wants himself at t+1

to consider the effect on t, therefore he considers the effect on t − 1. This agent

exactly follows Woodford’s advice, “Rather than doing one thing now but promising

to behave differently in the future, one should follow a time-invariant policy that is

of the kind that one would always wish to have been expected to follow.”

3.4.1 General Intermediate Commitment

I now derive the extension of Recursive Contracts for an arbitrary internalization of

prior constraints, T

V (x, γ−1) = min
γ∈Rl

+

max
a

F (x, a) + T (x, γ−1, a) + γh0 (x, a)+

+ V T ,adj (x, γ−1, γ) + βE [V (x′, γ) |x, a]

Inside the maximization, T represents internalization of the timeless perspective.

V T ,adj is the adjustment to next period’s value function from this period’s perspective.

In the equilibrium, it must be the case that

V T ,adj (x, γ−1, γ) + βE [T (x′, γ, a′)] = γβEt [h1 (x
′, a′)]

and

∂V T ,adj (u, γ−1, γ) + βE [T (x′, γ, a′)]

∂γ
= βEt [h1 (x

′, a′)]

It is not possible for all potential T . However, if T is linear in γ−1, then we can
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guarantee a result

T (x, γ−1, a) = γ−1f (x, a)

V T ,adj (x, γ−1, γ) = γ (g (x, γ−1)− E [f (x′, a′) |x, γ−1])

where it must be the case that

g (x, γ−1) = E [h0 (x
′, a′) |x, γ−1]

The policy choices a′ will probably depend on γ, a∗ (x′, γ), so g must represent the

reduced form expectation of the optimal choice γ∗ (x, γ−1).

3.4.2 General Scaled Commitment

Linear methods are often used to solve the dynamics of the economy under commit-

ment. In particular if the loss function is quadratic, and the system is linear, then

it can be formulated as a linear quadratic regulator (LQR) problem from optimal

control. The problem then becomes a matter of linear algebra instead of value func-

tion iteration. An attractive feature of scaled commitment is that it only requires

a small modification of existing commitment solutions to be able to model varying

levels of commitment. Specifically, equation (3.6) includes the term H′τ
β

instead of

the standard H′

β
. That is all that is needed to introduce scaling parameter τ into a

standard LQR commitment model.

This section will follow the derivation in Svensson (2010). Suppose the system is

as follows: [
I 0
0 H

] [
Xt+1

Etxt+1

]
=

[
A11 A12

A21 A22

] [
Xt

xt

]
+

[
B1

B2

]
it +

[
C
0

]
εt+1. (3.5)

X represent predetermined variables, x represent forward-looking variables, i repre-

sent instruments, and ε represents zero-mean, iid shocks. Assume A22 is invertible,

so we have

xt = A−1
22 (HEt [xt+1]− A21Xt −B2it) .
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It may seem restrictive that εt only affect Xt and not affect xt. However, one can just

add an additional state variable to Xt, and then allow it can impact xt via A21 and

A22.

As an example, consider wanting to model the New Keynesian Phillips curve from

the first part. We eventually want to capture

πt = yt + εt + βEt [πt] .

yt will be our instrument, πt must be one of the forward-looking variables. Thus we

definite it as follows: Xt = et, xt = πt, and it = yt. (The previous discussion assumed

that the shock was iid, which would correspond to ρ = 0.)

[
1 0
0 β

] [
et+1

πt+1|t

]
=

[
ρ 0
−1 1

] [
et
πt

]
+

[
0
−κ

]
yt +

[
1
0

]
εt+1.

Now assume that the agent is maximizing a quadratic period loss function

Lt ≡ −1

2

Xt

xt

it

′ WXX WXx WXi

WxX Wxx Wxi

WiX Wix Wii

Xt

xt

it


in our case

Lt = −1

2

etπt

yt

′ 0 0 0
0 1 0
0 0 λ

etπt

yt


This represents a more complicated system than in the previous section. That is

because the upper block was not represented on the previous setup. We need two

additional co-state variables to represent the Lagrange multipliers for the two blocks

of the system. The first ξt+1 are the Lagrange multipliers on the constraint

Xt+1 =
[
A11 A12 B1

] Xt

xt

it

+ Cεt+1.
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It is denoted with subscript t+ 1 because its value is only known upon realization of

εt+1.

The second co-state is γt on the constraint

Hxt+1|t =
[
A21 A22 B2

] Xt

xt

it


and has subscript t because it is known before the realization of εt+1.

Agents are maximizing

Lt = −1

2

Xt

xt

it

′

W

Xt

xt

it


subject to these two constraints. All agents are concerned with future Lagrange

multipliers therefore at time t, the effect on utility of

ξt+1|t (−A11Xt − A12xt −B1it − Cεt+1)

as well as the current period multiplier

ξt+1Xt+1

enters the consideration.

When making choices at time t, all agents also consider the γt constraint:

γt

Hxt+1|t −
[
A21 A22 B2

] Xt

xt

it

 .

Where they differ is how much they incorporate 1
β
γt−1Hxt. Agents with commit-

ment fully incorporate it, and agents with discretion ignore it. We will denote the

scaled commitment factor τ as a diagonal matrix whose elements are in [0, 1], with
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0 representing discretion and 1 representing commitment. Thus, our scaled commit-

ment agents will incorporate 1
β
τγt−1Hxt when making their choices.

Putting it all together, in period t, an agent maximizes

Et

[
Lt − ξ′t+1

[A11 A12 B1

] Xt

xt

it

− γ′
t

[A21 A22 B2

] Xt

xt

it


+

ξt
β
Xt +

1

β
τγ′

t−1Hxt

]

The first order conditions for this maximization of Xt, xt, and it are, respectively

0 =

Xt

xt

it

′ WXX

WxX

WiX

− ξ′t+1|tA11 − γ′
tA21 +

1

β
ξ′t

0 =

Xt

xt

it

′ WXx

Wxx

Wix

− ξ′t+1|tA12 − γ′
tA22 +

1

β
τγ′

t−1H

0 =

Xt

xt

it

′ WXi

Wxi

Wii

− ξ′t+1|tB1 − γ′
tB2

Appending columns we get the condition

0 =

Xt

xt

it

′

W −
[
ξt+1|t
γt

]′ [
A B

]
+

1

β

[
ξt
γt−1

]′ [
I 0 0
0 τH 0

]

We can rewrite this as

[
A B

]′ [ξt+1|t
γt

]
= W

Xt

xt

it

+
1

β

I 0
0 H ′τ
0 0

[ ξt
γt−1

]
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Combining this with equation 3.5,


I 0 0 0 0
0 H 0 0 0
0 0 0 A′

11 A′
21

0 0 0 A′
12 A′

22

0 0 0 B′
1 B′

2



Xt+1

xt+1|t
it+1|t
ξt+1|t
γt

 =


A11 A12 B1 0 0
A21 A22 B2 0 0
WXX WXx WXi

I
β

0

WxX Wxx Wxi 0 H′τ
β

WiX Wix Wii 0 0



Xt

xt

it
ξt
γt−1

+


C
0
0
0
0

 εt+1

(3.6)

This is identical to the derivation in Svensson (2010), but for the H′τ
β

term. In the

relevant part of his analysis, commitment is assumed, so it is just H′

β
.

Still following the other derivation, we will rearrange the matrix into blocks, so

that the predetermined variables, Xt+1 and γt, are together, and the remaining ones

are non-predetermined.


I 0 0 0 0
0 A′

22 0 0 A′
12

0 0 H 0 0
0 A′

21 0 0 A′
11

0 B′
2 0 0 B′

1



Xt+1

γt
xt+1|t
it+1|t
ξt+1|t

 =


A11 0 A12 B1 0

WxX
H′τ
β

Wxx Wxi 0

A21 0 A22 B2 0
WXX 0 WXx WXi

I
β

WiX 0 Wix Wii 0



Xt

γt−1

xt

it
ξt

+


C
0
0
0
0

 εt+1

Given this setup, there is a unique solution of the system if the Schur decomposi-

tion has the same number of unstable eigenvalues as the number of non-predetermined

variables: xt, it, ξt. Again see Svensson (2010) for more details.

The solution method yields

xt = Fx

[
Xt

γt−1

]

it = Fi

[
Xt

γt−1

]
[
Xt+1

γt

]
= M

[
Xt

γt−1

]
+ C̃εt+1

where the matrices Fx, Fi, and M are independent of C.
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The takeaway is that scaled commitment can be a drop-in addition to a common

existing solution to forward-looking problems. It allows commitment to be on a

spectrum between discretion and commitment.

3.5 Conclusion

This paper presents a new approach to considering intermediate behavior between

commitment and discretion. Like other agents who face forward looking constraints,

central bankers face the temptation to ignore the past. They may always face it

with respect to the inflation bias, and they additionally face it after a period at the

zero lower bound. I use one application of the approach to describe how a central

bank partially incorporates prior constraints into its decision this period, yielding

intermediate values for smoothing shocks and inflation bias. Further research will

explore the consequences of other limited internalization of prior constraints, as well

as estimating the values from the data.
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4

Conclusion

This dissertation discusses two contributions to the macroeconomic theory of mone-

tary policy. Chapter 2 proves the equivalence of three formulations of the problem

facing a policymaker with commitment and an informational advantage over the pri-

vate sector. In that context, the private-sector updating also becomes a control vari-

able to the policymaker. In a New Keynesian central bank model, I also demonstrate

how the final, recursive formulation is amenable to finding a steady state. I compare

the results for a central bank facing full information and commitment, and one facing

an informational advantage under discretion.

Chapter 3 develops an alternative framing of commitment. The standard approach

of commitment as the capacity to bind future actions ends up with promises being

all-or-nothing, either followed through or ignored. Building off of a micro-theoretic

model of temptation and self-control costs, I derive a novel intermediate form of

commitment. I then show implications of the intermediate form for a New Keynesian

monetary model with and without the zero lower bound constraint.
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Appendix A

Appendices for Chapter 2

A.1 Recursive constraints alternative formation

The recursive constraints described starting on page 34 use convenience notation

such as ac|p, xc|p, ac|c, xc|c, etc. This section precisely defines how those values are

calculated based on the augmented state and policy matrices. Recall,

yc ≡

 xc

xc|p
ac|p

 ∼ N (0,Σy)

with [
xc|p
ac|p

]
= E

{[
xc

ac

]
|Ipsp
}

Start by defining a variety of convenience matrices for intermediate values that

114



depend on yc

exc ≡
[
I 0 0

]
xc = excyc

exc|p ≡
[
0 I 0

]
xc|p = exc|pyc

e
x|ps
c|p ≡ exc − exc|p

xc − xc|p = e
x|ps
c|p yc

eac|p ≡
[
0 0 I

]
ac|p = eac|pyc

Observe that equation (2.13) can be rewritten as

ac = ac|p +Ge (Σy)
(
xc − xc|p

)
+ ηc

=
(
eac|p +Ge (Σy) e

x|ps
c|p

)
yc + ηc

For convenience define Gxa
c

Gxa
c ≡

[
ex 0

eac|p +Ge (Σy) e
x|ps
c|p INa

]
(A.1)

[
xc

ac

]
= Gxa

c

[
yc
ηc

]

remembering that Gxa
c is a function of Σy via Ge. The fully detailed version of

equations (2.14) and (2.15), which define Lc and xn respectively are

Lc =

[
yc
ηc

]T
(Gxa

c )T LGxa
c

[
yc
ηc

]

xn =
[
AGxa

c B
]  yc

ηc
wn


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Tracking the private sector’s information can be similarly calculated for versions

of (2.16) and (2.17),

zc = CGxa
c

[
yc
ηc

]

Ipsc =

xc|p
ac|p
zc

 =

[exc|p 0

eac|p 0

]
CGxa

c

[yc
ηc

]

Now to define the private sector belief updates. To define this precisely in terms

of yc and ηc we can use the following facts

[
yc|p
ηc|p

]
=


exc|p
exc|p
eac|p
0

 yc =


0 I 0
0 I 0
0 0 I
0 0 0

 yc

Define the convenience matrix e
yη|ps
c|p , where I’m using the notation from the paper of

superscript |ps indicating a private-sector prediction error

e
yη|ps
c|p ≡ I −


exc|p 0

exc|p 0

eac|p 0

0 0


[
yc
ηc

]
−
[
yc|p
ηc|p

]
= e

yη|ps
c|p

[
yc
ηc

]

Recall that the vector yc, ηc has the following distribution

[
yc
ηc

]
∼ N

(
0,

[
Σy 0
0 Ση (Σy)

])
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Therefore the following distributions hold, defining convenience matrix G
xa|ps
c|p

G
xa|ps
c|p ≡ Gxa

c e
yη|ps
c|p[

xc

ac

]
−
[
xc|p
ac|p

]
= G

xa|ps
c|p

[
yc
ηc

]

Σ
xa|ps
c|p = Var

([
xc

ac

]
−
[
xc|p
ac|p

])
= G

xa|ps
c|p

[
Σy 0
0 Ση (Σy)

](
G

xa|ps
c|p

)T
Per the derivation in appendix A.2, an optimal Kalman gain for zc is

zc − zc|p = C

([
xc

ac

]
−
[
xc|p
ac|p

])

Kxa ≡ Σ
xa|ps
c|p CT

(
CΣ

xa|ps
c|p CT

)+
(A.2)

with + representing the Moore-Penrose pseudoinverse. Again note that Kxa depends

on Σy, Ge, and Ση. Now for the precise definition of equation (2.19), and define

convenience matrix P xa
c|c

P xa
c|c ≡

[
exc|p 0

eac|p 0

]
+KxaCG

xa|ps
c|p (A.3)

[
xc|c
ac|c

]
=

[
xc|p
ac|p

]
+Kxa

(
zc − C

[
xc|p
ac|p

])

= P xa
c|c

[
yc
ηc

]

The exact value of yn in equation (2.21) can be calculated as follows. Recall,[
xn|c
an|c

]
=

[
A

Gc (Σy)

] [
xc|c
ac|c

]

=

[
A

Gc (Σy)

]
P xa
c|c

[
yc
ηc

]
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therefore

yn ≡

 xn

xn|c
an|c

 =

 AGxa
c B

AP xa
c|c 0

Gc (Σy)P xa
c|c 0

 yc
ηc
wn

 (A.4)

Σy
n =

 AGxa
c B

AP xa
c|c 0

Gc (Σy)P xa
c|c 0

Σy 0 0
0 Ση (Σy) 0
0 0 INw

 AGxa
c B

AP xa
c|c 0

Gc (Σy)P xa
c|c 0

T

Finally the precise formula for checking wither the constraint in equation (2.22)

holds. Define a Nµ element random variable bc to be equal to the constraint

P b
c ≡ DGxa

c + J

[
A

Gc (Σy)

]
P xa
c|c

bc ≡ P b
c

[
yc
ηc

]
(A.5)

= D

[
xc

ac

]
+ J

[
xn|c
an|c

]

Var (bc) = P b
c

[
Σy 0
0 Ση (Σy)

] (
P b
c

)T
Lemma 24. Let bc be defined in equation (A.5). Forward Looking Constraint (2.22)

holds for all
[
yc
ηc

]
∈ supp

(
N

(
0,

[
Σy 0
0 Ση (Σy)

]))
iff tr (Var (bc)) = 0.

Proof. =⇒ , by contrapositive: tr (Var (bc)) ̸= 0 implies

∃
[
yc
ηc

]
∈ supp

(
N

(
0,

[
Σy 0
0 Ση (Σy)

]))

such that 0 ̸= P b
c

[
yc
ηc

]
= D

[
xc

ac

]
+ J

[
xn|c
an|c

]
⇐= ,by contrapositive: Assume there exists

∃
[
yc
ηc

]
∈ supp

(
N

(
0,

[
Σy 0
0 Ση (Σy)

]))
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such that P b
c

[
yc
ηc

]
= bc ̸= 0. There exists a ϵ > 0 such that

[
ỹc
η̃c

]
∈ B

([
yc
ηc

]
, ϵ

)
∩ supp

(
N

(
0,

[
Σy 0
0 Ση (Σy)

]))
=⇒ 0 ̸= P b

c

[
ỹc
η̃c

]

where B

([
yc
ηc

]
, ϵ

)
is the ϵ-ball around

[
yc
ηc

]
. Because bc ̸= 0 for a subset of positive

measure of supp
(
N

(
0,

[
Σy 0
0 Ση (Σy)

]))
, some element of bc has strictly positive

variance, so the trace of its variance is strictly positive, tr (Var (bc)) > 0.

By the above lemma, we can determine from Σy, Ge, Gc, and Ση whether the

constraint is met for all possible
[
yc
ηc

]
.

A.2 Generalized Kalman updating with the Moore–Penrose pseudoin-
verse

Coming into period t, let the observer have some uncertainty in state st,

Σ
s|obs
t|t−1 = Var

(
st − st|t−1

)
A standard Kalman update has the form

st|t = st|t−1 +Kt

(
zt − zt|t−1

)
for the state st, and some signal zt = Ctst. If Σz|obs

t|t−1 = Var
(
zt − zt|t−1

)
= CtΣ

s|obs
t|t−1C

T
t

has full rank, the optimal K has the well known form based on the inverse of Σz|obs
t|t−1.

Kt = Σs
t|t−1C

T
t

(
Σ

z|obs
t|t−1

)−1

The Kalman filter was originally used to model real-world measurements, so there

was some assumed measurement error, vt ∼ N (0,Σv), zt = Ctst+ vt. If there is some

independent error for every dimension of zt, then Σ
z|obs
t|t−1 would always have full rank.
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For the purposes of theoretical macroeconomics however, we should entertain the

possibility that a fully-informed policymaker could execute at perfectly without error.

In those cases and under some model specifications, the policymaker may choose to

make Σ
z|obs
t|t−1 have sub-rank. Alternatively, st = st|t−1, there is no new information in

st, and the private-sector is perfectly informed coming into the period Σ
z|obs
t|t−1 will be

0.

Here I derive a more general equation for an optimal Kalman gain.1

Σ
s|obs
t|t = Cov

(
st − st|t

)
= Cov

(
st −

(
st|t−1 +KtCt

(
st − st|t−1

)))
= Cov

(
(I −KtCt)

(
st − st|t−1

))
= (I −KtCt) Σ

s|obs
t|t−1 (I −KtCt)

T

= Σs
t|t−1 −KtCtΣ

s|obs
t|t−1 − Σ

s|obs
t|t−1C

T
t K

T
t +KtCtΣ

s|obs
t|t−1C

T
t K

T
t

Minimizing E
{∣∣st − st|t

∣∣2} is equivalent to minimizing tr
(
Σ

s|obs
t|t

)
. We can take

the derivative to get that any optimal Kt has the property that

∂tr
(
Σ

s|obs
t|t

)
∂Kt

= −2
(
CtΣ

s|obs
t|t−1

)T
+ 2KtΣ

s|obs
t|t−1 = 0

rearranging

KtΣ
z|obs
t|t−1 = Σ

s|obs
t|t−1C

T
t

The problem arises if Σz|obs
t|t−1 doesn’t have full rank, so I cannot right multiply by

its inverse. In such a case there is more than one optimal Kt. I now show steps to

solve for a specific one, using the Moore–Penrose pseudoinverse.

1 The steps below are similar to those building to equation (4.2.16) in Brown and Hwang (2012)
but without their noise term vt.
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Perform an eigenvalue decomposition, Σz|obs
t|t−1 = QΛQT , so that the eigenvalues in

Λ are in increasing order of absolute value. If Nullity
(
Σ

z|obs
t|t−1

)
= n > 0, then the first

n columns of Λ are zero. Right multiply the equation above by Q,

KtQΛ = Σ
s|obs
t|t−1C

T
t Q

Thus the first n columns of Σs
t|t−1C

T
t Q are also zero. Use the pseudoinverse of Λ

(
Λ+
)
ii
=

{
0 λii = 0

1/λii λii ̸= 0

which has the property that

ΛΛ+ =

[
0 0
0 INz−n

]
Define an optimal K∗

t such that

K∗
t Q = Σ

s|obs
t|t−1C

T
t QΛ+

and then,

K∗
t = Σ

s|obs
t|t−1C

T
t QΛ+QT

= Σ
s|obs
t|t−1C

T
t

(
Σz

t|t−1

)+
where I’ve a property of the more general pseudoinverse,

(
Σz

t|t−1

)+
= QΛ+QT .

A.2.1 Examples

First consider the trivial example where Σ
z|obs
t|t−1 = 0, implying zt = zt|t−1. Any K is

optimal, as it must be the case that CtΣ
s|obs
t|t−1 = 0. Thus, no matter the K, Σs|obs

t|t =

Σ
s|obs
t|t−1. The pseudoinverse gives us the reasonable, K = Σ

s|obs
t|t−1C

T
t (0)+ = 0.
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Now consider a somewhat informative, but sub-rank
(
zt − zt|t−1

)
. Let there be

two uncorrelated states

st =

[
a
b

]
∼ N

(
0,

[
1 0
0 1

])

st|t−1 =

[
0
0

]
but one of them gets observed twice.

zt =

[
a
a

]
= C

[
a
b

]

C =

[
1 0
1 0

]
then

Σ
z|obs
t|t−1 =

[
1 1
1 1

]
(
Σ

z|obs
t|t−1

)+
=

[
1/4 1/4
1/4 1/4

]

K∗
t =

[
1 0
0 1

] [
1 1
0 0

] [
1/4 1/4
1/4 1/4

]

=

[
1/2 1/2
0 0

]
[
at|t
bt|t

]
=

[
0
0

]
+K∗

t zt

at|t =
1

2
(zt1 + zt2)

The proposed K∗
t updates the prediction of at as the average of the two parts of

the signal, zt1, zt2. But any Kt =

[
c 1− c
0 0

]
will have the same performance. This

comes from the fact that Σz|obs
t|t−1 has an eigenvalue of 0 for eigenvector

[
1 −1

]T , there

is no variation in that dimension. So changing the attribution of the signal in that

dimension is costless to the final uncertainty in Σ
s|obs
t|t .
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A.3 Using the pseudoinverse for to match covariance

Consider y = Ax+ε, with x ∼ N (0,Σx). We wish to choose A and Σε so that jointly[
x
y

]
∼ N

(
0,

[
Σx Σxy

Σyx Σy

])
Let n = nullity (Σx). Use an eigenvalue decomposition with an orthonormal basis

so that Σx = QΛQT and the first n eigenvalues in Λ are 0.

Define a rotated x̃ = QTx, Var (x̃) = Λ, so j ≤ n =⇒ x̃j = 0. Now consider the

covariance of any possible y and x̃

Cov (y, x̃) = E
{
yx̃T

}
= Cov

(
y,QTx

)
= ΣyxQ

But we know that j ≤ n =⇒ x̃j = 0, so it must be the case that

j ≤ n =⇒ (ΣyxQ)·j = 0

otherwise the desired Σyx is impossible. Assuming then that (ΣyxQ)·j = 0 , consider

this suggestion: A = ΣyxΣ
+
x .

Cov (Ax, x) = ΣyxΣ
+
xΣx

= ΣyxQΛ+QTQΛQT

= ΣyxQΛ+ΛQT

(
Λ+Λ

)
ii
=

{
0 i ≤ n

1 i > n

Because the first n columns of ΣyxQ are 0, ΣyxQΛ+Λ = ΣyxQ, and Cov (Ax, x) = Σyx.

For the desired Σy to be feasible, it must be the case that Σy − Σyx (Σx)
+Σxy is

positive semi-definite. Assuming it is, let Σε = Σy −Σyx (Σx)
+Σxy, and then

[
x
y

]
has

the desired covariance.
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A.4 Examples of Challenging Full History Sequences

Below are two examples of finite FHS that demonstrate some of the features in the

proof. The first shows why η may be necessary for a CES in order to match variances

of an FHS. The second shows how an FHS without the Span Property could still be

optimal, and how proposition 13 would weakly improve it.

A.4.1 Showing the necessity of η

This example provides a FHS that doesn’t use η, but where a CES requires η to

match its covariances.

Consider this simple model

x0 ∼ N (0, 1)

zt = at

xt+1 = wt+1

Now consider the FHS,

a0 = 0

a1 = x0

This almost certainly going to be suboptimal, for interesting loss functions. But

proposition 16 says that any FHS with the Span Property can be matched. This plan

has the Span Property,

z0 = 0[
x0|0
a0|0

]
=

[
0
0

]
a1|0 = 0

Now consider the possible (x1, a1) for the CES without η

aCE
1 = GC

0

[
0
0

]
+Ge

1 (x1 − 0) = Ge
1x1
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Therefore, its variance must be

Var
([

x1

aCE
1

])
=

[
1 Ge

1

Ge
1 (Ge

1)
2

]
The variance for the FHS is

Var
([

x1

a1

])
=

[
1 0
0 1

]
and cannot be matched for any choice of Ge

1. To match this FHS, the CES must use

aCE∗
1 = η1

η1 ∼ N (0, 1)

This shows that there exist FHS with the Span Property with Ση
t = 0, but whose

matching CES must use Ση̃
t ̸= 0 in order to match variances of (yt, at). The problem

arises because the FHS has access to variation outside of
(
xt, xt−1|t−1, at−1|t−1

)
which

are the random variables from the model available to the CES. Therefore, we must

give the CES access to Ση̃
t , in order to match all possible covariances (yt, at). Once

the CES is using ηt, the FHS must have access as well so that the equivalence goes

both ways.

A.4.2 An optimal FHS without the Span Property

This shows a (somewhat trivial) FHS without the Span Property at time 1. L is

constructed so that the extra variation in a2|1 is irrelevant to losses, and the FHS is

still optimal. Finally, I show how proposition 13 would modify the sequence, so that

the new FHS has the Span Property at time 1. (I omit ηt as it is not used in this

example.)

x0 ∼ N (0, 1)

zt = xt

xt+1 = wt+1

Lt = a2t,1
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The Forward-Looking Constraint is the simple

0 =
[
1 −1 0

] [xt

at

]
+ 0

[
xt+1|t
at+1|t

]
= xt − at,1

so it must be the case that at,1 = xt for all t, and all FHS in FH have the same losses.

Now consider the following FHS for t ∈ {0, 1, 2},

a0 =

[
x0

0

]
=

[
1
0

]
x0

a1 =

[
w1

0

]
=

[
0 1
0 0

] [
x0

w1

]

a2 =

[
w2

x0

]
=

[
0 0 1
1 0 0

]x0

w1

w2


we can see that at time 1,

Ips1 = {x0, w1}

[
x1|1
a1|1

]
=

[
x1

a1

]
=

w1

w1

0


a2|1 =

[
0
x0

]

The FHS does not have the Span Property at time 1, because a2|1 ̸∈ span
(
x1|1, a1|1

)
=

span ({w1}). As discussed after proof of proposition 13, this additional variation is

irrelevant to the Forward-Looking Constraint. This FHS is still optimal, because the

extra variance in a2|1 does not affect losses.

Following the proof and using definition 11,

H∗1
2 =

{
h2 : h2|1 = h2 ∧ x1 = 0 ∧ a1 = 0

}
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the first condition says that w2 = 0, the second and third conditions say that w1 = 0.

Therefore,

H∗1
2 =


x0

0
0


H∗1⊥

2 =


 0
w1

w2


P ∗1
2 =

1 0 0
0 0 0
0 0 0


Applying the steps of the proof to construct the new G̃2,

G2 =

[
0 0 1
1 0 0

]
G̃2 = G2 (I − P ∗

2 )

=

[
0 0 1
0 0 0

]

Decomposing a2, a∗12 =

[
0
x0

]
, this is taken to 0, so ã∗12 =

[
0
0

]
. In the orthogonal
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compliment, a∗1⊥2 =

[
w2

0

]
= ã∗1⊥2 . The final result is

ã2 =

[
0 0 1
1 0 0

]I −

1 0 0
0 0 0
0 0 0

x0

w1

w2



=

[
0 0 1
0 0 0

]x0

w1

w2


=

[
w2

0

]

ã2|1 =

[
0
0

]

The new FHS has strictly lower covariance and the Span Property at time 1.
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